Tobacco chloroplast transformants expressing genes encoding dehydroascorbate reductase, glutathione reductase, and glutathione-S-transferase, exhibit altered anti-oxidant metabolism and improved abiotic stress tolerance

被引:136
作者
Le Martret, Benedicte [1 ]
Poage, Miranda [1 ]
Shiel, Karen [1 ]
Nugent, Gregory D. [1 ]
Dix, Philip J. [1 ]
机构
[1] Natl Univ Ireland Maynooth, Dept Biol, Maynooth, Kildare, Ireland
基金
爱尔兰科学基金会;
关键词
dehydroascorbate reductase; glutathione; ascorbate; chloroplast transformant; abiotic stress; reactive oxygen species; TRANSGENIC TOBACCO; ASCORBATE PEROXIDASE; OXIDATIVE STRESS; SUPEROXIDE-DISMUTASE; MOLECULAR-CLONING; ENHANCED TOLERANCE; HYDROGEN-PEROXIDE; ESCHERICHIA-COLI; PLANTS; SALT;
D O I
10.1111/j.1467-7652.2011.00611.x
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
One approach to understanding the Reactive Oxygen Species (ROS)-scavenging systems in plant stress tolerance is to manipulate the levels of antioxidant enzyme activities. In this study, we expressed in the chloroplast three such enzymes: dehydroascorbate reductase (DHAR), glutathione-S-transferase (GST) and glutathione reductase (GR). Homoplasmic chloroplast transformants containing either DHAR or GST, or a combination of DHAR:GR and GST:GR were generated and confirmed by molecular analysis. They exhibited the predicted changes in enzyme activities, and levels or redox state of ascorbate and glutathione. Progeny of these plants were then subjected to environmental stresses including methyl viologen (MV)-induced oxidative stress, salt, cold and heavy metal stresses. Overexpression of these different enzymes enhanced salt and cold tolerance. The simultaneous expression of DHAR:GR and GST:GR conferred MV tolerance while expression of either transgene on its own didn't. This study provides evidence that increasing part of the antioxidant pathway within the chloroplast enhances the plant's ability to tolerate abiotic stress.
引用
收藏
页码:661 / 673
页数:13
相关论文
共 52 条
[1]   Simultaneous expression of choline oxidase, superoxide dismutase and ascorbate peroxidase in potato plant chloroplasts provides synergistically enhanced protection against various abiotic stresses [J].
Ahmad, Raza ;
Kim, Yun-Hee ;
Kim, Myoung-Duck ;
Kwon, Suk-Yoon ;
Cho, Kwangsoo ;
Lee, Haeng-Soon ;
Kwak, Sang-Soo .
PHYSIOLOGIA PLANTARUM, 2010, 138 (04) :520-533
[2]   The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat [J].
Alexieva, V ;
Sergiev, I ;
Mapelli, S ;
Karanov, E .
PLANT CELL AND ENVIRONMENT, 2001, 24 (12) :1337-1344
[3]  
AONO M, 1993, PLANT CELL PHYSIOL, V34, P129
[4]   Over-expression of ascorbate peroxidase in tobacco chloroplasts enhances the tolerance to salt stress and water deficit [J].
Badawi, GH ;
Kawano, N ;
Yamauchi, Y ;
Shimada, E ;
Sasaki, R ;
Kubo, A ;
Tanaka, K .
PHYSIOLOGIA PLANTARUM, 2004, 121 (02) :231-238
[5]   A GLUTATHIONE-S-TRANSFERASE WITH GLUTATHIONE-PEROXIDASE ACTIVITY FROM ARABIDOPSIS-THALIANA - MOLECULAR-CLONING AND FUNCTIONAL-CHARACTERIZATION [J].
BARTLING, D ;
RADZIO, R ;
STEINER, U ;
WEILER, EW .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1993, 216 (02) :579-586
[6]   Taming plastids for a green future [J].
Bock, R ;
Khan, MS .
TRENDS IN BIOTECHNOLOGY, 2004, 22 (06) :311-318
[7]   Transgenic plastids in basic research and plant biotechnology [J].
Bock, R .
JOURNAL OF MOLECULAR BIOLOGY, 2001, 312 (03) :425-438
[8]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[9]   OXIDATIVE STRESS RESPONSES IN TRANSGENIC TOBACCO CONTAINING ALTERED LEVELS OF GLUTATHIONE-REDUCTASE ACTIVITY [J].
BROADBENT, P ;
CREISSEN, GP ;
KULAR, B ;
WELLBURN, AR ;
MULLINEAUX, PM .
PLANT JOURNAL, 1995, 8 (02) :247-255
[10]   Identification, cloning, and functional expression of three glutathione transferase genes from Aspergillus fumigatus [J].
Burns, C ;
Geraghty, R ;
Neville, C ;
Murphy, A ;
Kavanagh, K ;
Doyle, S .
FUNGAL GENETICS AND BIOLOGY, 2005, 42 (04) :319-327