Initiation of protein synthesis in mammalian cells with codons other than AUG and amino acids other than methionine

被引:81
作者
Drabkin, HJ [1 ]
Rajbhandary, UL [1 ]
机构
[1] MIT, Dept Biol, Cambridge, MA 02139 USA
关键词
D O I
10.1128/MCB.18.9.5140
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Protein synthesis is initiated universally with the amino acid methionine. In Escherichia coli, studies with anticodon sequence mutants of the initiator methionine tRNA have shown that protein synthesis can be initiated with several other amino acids. In eukaryotic systems, however, a yeast initiator tRNA aminoacylated with isoleucine was found to be inactive in initiation in mammalian cell extracts. This finding raised the question of whether methionine is the only amino acid capable of initiation of protein synthesis in eukaryotes. In this work, we studied the activities, in initiation, of four different anticodon sequence mutants of human initiator tRNA in mammalian COS1 cells, using reporter genes carrying mutations in the initiation codon that are complementary to the tRNA anticodons. The mutant tRNAs used are aminoacylated with glutamine, methionine, and valine. Our results show that in the presence of the corresponding mutant initiator tRNAs, AGG and GUC can initiate protein synthesis in COS1 cells with methionine and valine, respectively. CAG initiates protein synthesis with glutamine but extremely poorly, whereas UAG could not be used to initiate protein synthesis with glutamine. We discuss the potential applications of the mutant initiator tRNA-dependent initiation of protein synthesis with codons other than AUG for studying the many interesting aspects of protein synthesis initiation in mammalian cells.
引用
收藏
页码:5140 / 5147
页数:8
相关论文
共 58 条
[1]   EUKARYOTIC METHIONYL AMINOPEPTIDASES - 2 CLASSES OF COBALT-DEPENDENT ENZYMES [J].
ARFIN, SM ;
KENDALL, RL ;
HALL, L ;
WEAVER, LH ;
STEWART, AE ;
MATTHEWS, BW ;
BRADSHAW, RA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (17) :7714-7718
[2]   THE HUMAN TRANSFER RNAVAL GENE FAMILY - ORGANIZATION, NUCLEOTIDE-SEQUENCES AND HOMOLOGOUS TRANSCRIPTION OF 3 SINGLE-COPY GENES [J].
ARNOLD, GJ ;
SCHMUTZLER, C ;
THOMANN, U ;
VANTOL, H ;
GROSS, HJ .
GENE, 1986, 44 (2-3) :287-297
[3]   EVIDENCE TO IMPLICATE TRANSLATION BY RIBOSOMES IN THE MECHANISM BY WHICH NONSENSE CODONS REDUCE THE NUCLEAR-LEVEL OF HUMAN TRIOSEPHOSPHATE ISOMERASE MESSENGER-RNA [J].
BELGRADER, P ;
CHENG, J ;
MAQUAT, LE .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (02) :482-486
[4]  
Bjork Glenn R., 1995, P165
[5]  
BROWN JL, 1979, J BIOL CHEM, V254, P1447
[6]   INITIATION OF INVIVO PROTEIN-SYNTHESIS WITH NONMETHIONINE AMINO-ACIDS [J].
CHATTAPADHYAY, R ;
PELKA, H ;
SCHULMAN, LH .
BIOCHEMISTRY, 1990, 29 (18) :4263-4268
[7]   TRANSFER RNA(IMET) FUNCTIONS IN DIRECTING THE SCANNING RIBOSOME TO THE START SITE OF TRANSLATION [J].
CIGAN, AM ;
FENG, L ;
DONAHUE, TF .
SCIENCE, 1988, 242 (4875) :93-97
[8]   A LIVER-ENRICHED TRANSCRIPTIONAL ACTIVATOR PROTEIN, LAP, AND A TRANSCRIPTIONAL INHIBITORY PROTEIN, LIP, ARE TRANSLATED FROM THE SAME MESSENGER-RNA [J].
DESCOMBES, P ;
SCHIBLER, U .
CELL, 1991, 67 (03) :569-579
[9]   MUTATIONS AT A ZN(II) FINGER MOTIF IN THE YEAST ELF-2-BETA GENE ALTER RIBOSOMAL START-SITE SELECTION DURING THE SCANNING PROCESS [J].
DONAHUE, TF ;
CIGAN, AM ;
PABICH, EK ;
VALAVICIUS, BC .
CELL, 1988, 54 (05) :621-632
[10]  
Drabkin HJ, 1996, MOL CELL BIOL, V16, P907