Orthonormal finite ridgelet transform for image compression

被引:31
作者
Do, MN [1 ]
Vetterli, M [1 ]
机构
[1] Ecole Polytech Fed Lausanne, Swiss Fed Inst Technol, Lab Audiovisual Commun, CH-1015 Lausanne, Switzerland
来源
2000 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL II, PROCEEDINGS | 2000年
关键词
D O I
10.1109/ICIP.2000.899394
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A finite implementation of the ridgelet transform is presented. The transform is invertible, non-redundant and achieved via fast algorithms. Furthermore we show thar this transform is orthogonal hence it allows one to use non-linear approximations for the representation of images. Numerical results on different test images are shown. Those results conform with the theory of the ridgelet transform in the continuous domain - the obtained representation can represent efficiently images with linear singularities. Thus it indicates the potential of the proposed system as a new transform for coding of images.
引用
收藏
页码:367 / 370
页数:4
相关论文
共 8 条
[1]  
Bolker D., 1987, INTEGRAL GEOMETRY CO, V63, P27
[2]  
Candes E. J., 1998, THESIS STANFORD U
[3]   Ridgelets:: a key to higher-dimensional intermittency? [J].
Candès, EJ ;
Donoho, DL .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1999, 357 (1760) :2495-2509
[4]   Data compression and harmonic analysis [J].
Donoho, DL ;
Vetterli, M ;
DeVore, RA ;
Daubechies, I .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1998, 44 (06) :2435-2476
[5]  
HERMAN GT, 1980, IMAGE RECONSTRUCTION
[6]   IMAGE REPRESENTATIONS VIA A FINITE RADON-TRANSFORM [J].
MATUS, F ;
FLUSSER, J .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1993, 15 (10) :996-1006
[7]  
Salzberg PM, 1999, APPL NUM HARM ANAL, P417
[8]  
Vetterli M., 1995, Wavelets and Subband Coding