Efficient polymer-nanocrystal quantum-dot photodetectors

被引:145
作者
Qi, DF
Fischbein, M
Drndic, M
Selmic, S [1 ]
机构
[1] Louisiana Tech Univ, Dept Elect Engn, Ruston, LA 71272 USA
[2] Louisiana Tech Univ, Inst Micromfg, Ruston, LA 71272 USA
[3] Univ Penn, Dept Phys & Astron, David Rittenhouse Lab, Philadelphia, PA 19104 USA
基金
美国国家科学基金会;
关键词
D O I
10.1063/1.1872216
中图分类号
O59 [应用物理学];
学科分类号
摘要
We have realized highly efficient photodetectors based on composites of the semiconducting polymer poly[2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylenevinylene] and PbSe nanocrystal quantum dots. The external quantum efficiency in these devices is greater than 1 for electric fields E similar to 7 X 10(5) V/cm. The observed photocurrent gain could be attributed to the carrier multiplication in PbSe nanocrystal quantum dots via multiple exciton generation, and the efficient charge conduction through the host polymer material. This photocurrent gain is observed only when the PbSe nanocrystal band gap is at least three times smaller than the optical energy gap of the active polymer material. (C) 2005 American Institute of Physics.
引用
收藏
页码:1 / 3
页数:3
相关论文
共 12 条
[1]   Size-tunable infrared (1000-1600 nm) electroluminescence from PbS quantum-dot nanocrystals in a semiconducting polymer [J].
Bakueva, L ;
Musikhin, S ;
Hines, MA ;
Chang, TWF ;
Tzolov, M ;
Scholes, GD ;
Sargent, EH .
APPLIED PHYSICS LETTERS, 2003, 82 (17) :2895-2897
[2]   Temperature- and field-dependent electron and hole mobilities in polymer light-emitting diodes [J].
Bozano, L ;
Carter, SA ;
Scott, JC ;
Malliaras, GG ;
Brock, PJ .
APPLIED PHYSICS LETTERS, 1999, 74 (08) :1132-1134
[3]   Efficient excitation transfer from polymer to nanocrystals [J].
Chang, TWF ;
Musikhin, S ;
Bakueva, L ;
Levina, L ;
Hines, MA ;
Cyr, PW ;
Sargent, EH .
APPLIED PHYSICS LETTERS, 2004, 84 (21) :4295-4297
[4]   Trilayer hybrid polymer-quantum dot light-emitting diodes [J].
Chaudhary, S ;
Ozkan, M ;
Chan, WCW .
APPLIED PHYSICS LETTERS, 2004, 84 (15) :2925-2927
[5]   Electroluminescence from single monolayers of nanocrystals in molecular organic devices [J].
Coe, S ;
Woo, WK ;
Bawendi, M ;
Bulovic, V .
NATURE, 2002, 420 (6917) :800-803
[6]   QUANTUM-SIZE EFFECTS IN CHEMICALLY DEPOSITED, NANOCRYSTALLINE LEAD SELENIDE FILMS [J].
GORER, S ;
ALBUYARON, A ;
HODES, G .
JOURNAL OF PHYSICAL CHEMISTRY, 1995, 99 (44) :16442-16448
[7]   POLARIZED-ELECTROABSORPTION SPECTROSCOPY OF A SOLUBLE DERIVATIVE OF POLY(P-PHENYLENEVINYLENE) ORIENTED BY GEL PROCESSING IN POLYETHYLENE - POLARIZATION ANISOTROPY, THE OFF-AXIS DIPOLE-MOMENT, AND EXCITED-STATE DELOCALIZATION [J].
HAGLER, TW ;
PAKBAZ, K ;
HEEGER, AJ .
PHYSICAL REVIEW B, 1994, 49 (16) :10968-10975
[8]   First solar cells based on CdTe nanoparticle/MEH-PPV composites [J].
Kumar, S ;
Nann, T .
JOURNAL OF MATERIALS RESEARCH, 2004, 19 (07) :1990-1994
[9]   Employing end-functional polythiophene to control the morphology of nanocrystal-polymer composites in hybrid solar cells [J].
Liu, JS ;
Tanaka, T ;
Sivula, K ;
Alivisatos, AP ;
Fréchet, JMJ .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (21) :6550-6551
[10]   Spectroscopy and hot electron relaxation dynamics in semiconductor quantum wells and quantum dots [J].
Nozik, AJ .
ANNUAL REVIEW OF PHYSICAL CHEMISTRY, 2001, 52 :193-231