Hyperactivation of p21ras and the hematopoietic-specific Rho GTPase Rac2, cooperate to alter the proliferation of neurofibromin-deficient mast cells in vivo and in vitro

被引:102
作者
Ingram, DA
Hiatt, K
King, AJ
Fisher, L
Shivakumar, R
Derstine, C
Wenning, MJ
Diaz, B
Travers, JB
Hood, A
Marshall, M
Williams, DA
Clapp, DW
机构
[1] Indiana Univ, Sch Med, Herman B Wells Ctr Pediat Res, Canc Res Inst, Indianapolis, IN 46202 USA
[2] Indiana Univ, Sch Med, Dept Pediat, Indianapolis, IN 46202 USA
[3] Indiana Univ, Sch Med, Dept Immunol Microbiol, Indianapolis, IN 46202 USA
[4] Indiana Univ, Sch Med, Dept Dermatol, Indianapolis, IN 46202 USA
[5] Indiana Univ, Sch Med, Dept Med, Indianapolis, IN 46202 USA
[6] Indiana Univ, Sch Med, Dept Mol Genet, Indianapolis, IN 46202 USA
[7] Howard Hughes Med Inst, Indianapolis, IN 46202 USA
[8] Eli Lilly & Co, Indianapolis, IN 46285 USA
关键词
Rac; Pak; PI3-K; cross-talk; neurofibromatosis type 1;
D O I
10.1084/jem.194.1.57
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Mutations in the NF1 tumor suppressor gene cause neurofibromatosis type I (NF1), a disease characterized by the formation of cutaneous neurofibromas infiltrated with a high density of degranulating mast cells. A hallmark of cell lines generated from NF1 patients of Nf1-deficient mice is their propensity to hyperproliferate. Neurofibromin, the protein encoded by NF1, negatively regulates p21(ras) activity by accelerating the conversion of Ras-GTP to Ras-GDP. However, identification of alterations in specific P21(ras) effector pathways that control proliferation in NF1-deficient cells is incomplete and critical for understanding disease pathogenesis. Recent studies have suggested that the proliferative effects of p21(ras) may depend on signaling outputs from small Rho GTPases, Rac and Rho, but the physiologic importance of these interactions in an animal disease model has not been established. Using a genetic intercross between Nf1(+/-) and Rac2(-/-) mice, we now provide genetic evidence to support a biochemical model where hyperactivation of the extracellular signal-regulated kinase (ERK) via the hematopoietic-specific Rho GTPase, Rac2, directly contributes to the hyperproliferation of Nf1-deficient mast cells in vitro and in vivo. Further, we demonstrate that Rac2 functions as mediator of cross-talk between phosphoinositide 3-kinase (PI-3K) and the classical p21(ras)-Raf-Mek-ERK pathway to confer a distinct proliferative advantage to Nf1(+/-) mast cells. Thus, these studies identify Rac2 as a novel mediator of cross-talk between PI-3K and the p21(ras)-ERK pathway which function to alter the cellular phenotype of a cell lineage involved in the pathologic complications of a common genetic disease.
引用
收藏
页码:57 / 69
页数:13
相关论文
共 46 条
[1]   IDENTIFICATION OF THE SITES IN MAP KINASE KINASE-1 PHOSPHORYLATED BY P74(RAF-1) [J].
ALESSI, DR ;
SAITO, Y ;
CAMPBELL, DG ;
COHEN, P ;
SITHANANDAM, G ;
RAPP, U ;
ASHWORTH, A ;
MARSHALL, CJ ;
COWLEY, S .
EMBO JOURNAL, 1994, 13 (07) :1610-1619
[2]   Mechanism of activation and function of protein kinase B [J].
Alessi, DR ;
Cohen, P .
CURRENT OPINION IN GENETICS & DEVELOPMENT, 1998, 8 (01) :55-62
[3]   PAK to the future [J].
Bagrodia, S ;
Cerione, RA .
TRENDS IN CELL BIOLOGY, 1999, 9 (09) :350-355
[4]   Ras and Rho GTPases: A family reunion [J].
Bar-Sagi, D ;
Hall, A .
CELL, 2000, 103 (02) :227-238
[5]   Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis [J].
Bergers, G ;
Brekken, R ;
McMahon, G ;
Vu, TH ;
Itoh, T ;
Tamaki, K ;
Tanzawa, K ;
Thorpe, P ;
Itohara, S ;
Werb, Z ;
Hanahan, D .
NATURE CELL BIOLOGY, 2000, 2 (10) :737-744
[6]   Nf1 and Gmcsf interact in myeloid leukemogenesis [J].
Birnbaum, RA ;
O'Marcaigh, A ;
Wardak, Z ;
Zhang, YY ;
Dranoff, G ;
Jacks, T ;
Clapp, DW ;
Shannon, KM .
MOLECULAR CELL, 2000, 5 (01) :189-195
[7]   Loss of NF1 results in activation of the Ras signaling pathway and leads to aberrant growth in haematopoietic cells [J].
Bollag, G ;
Clapp, DW ;
Shih, S ;
Adler, F ;
Zhang, YY ;
Thompson, P ;
Lange, BJ ;
Freedman, MH ;
McCormick, F ;
Jacks, T ;
Shannon, K .
NATURE GENETICS, 1996, 12 (02) :144-148
[8]   Biochemical characterization of a novel KRAS insertion mutation from a human leukemia [J].
Bollag, G ;
Adler, F ;
elMasry, N ;
McCabe, PC ;
Conner, E ;
Thompson, P ;
McCormick, F ;
Shannon, K .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (51) :32491-32494
[9]   The dual specificity mitogen-activated protein kinase phosphatase-1 and -2 are induced by the p42/p44(MAPK) cascade [J].
Brondello, JM ;
Brunet, A ;
Pouyssegur, J ;
McKenzie, FR .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (02) :1368-1376
[10]   Reduced MAP kinase phosphatase-1 degradation after p42/p44MAPK-dependent phosphorylation [J].
Brondello, JM ;
Pouysségur, J ;
McKenzie, FR .
SCIENCE, 1999, 286 (5449) :2514-2517