Structure of the 1-36 amino-terminal fragment of human phospholamban by nuclear magnetic resonance and modeling of the phospholamban pentamer

被引:55
作者
Pollesello, P
Annila, A
Ovaska, M
机构
[1] Orion Corp, Orion Phama, Dept Pharmacol & Drug Discovery, FIN-02101 Espoo, Finland
[2] VTT, Chem Technol, FIN-02044 Espoo, Finland
关键词
D O I
10.1016/S0006-3495(99)77339-X
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
The structure of a 36-amino-acid-long amino-terminal fragment of phospholamban (phospholamban[1-361]) in aqueous solution containing 30% trifluoroethanol was determined by nuclear magnetic resonance. The peptide, which comprises the cytoplasmic domain and six residues of the transmembrane domain of phospholamban, assumes a conformation characterized by two alpha-helices connected by a turn. The residues of the turn are Ile18, Glu19, Met20, and Pro21, which, are adjacent to the two phosphorylation sites Ser16 and Thr17. The proline is in a trans conformation. The helix comprising amino acids 22-36 is well determined (the root mean square deviation for the backbone atoms, calculated for a family of 18 nuclear magnetic resonance structures is 0.57 Angstrom). Recently, two molecular models of the transmembrane domain of phospholamban were proposed in which a symmetric homopentamer is composed of a left-handed coiled coil of alpha-helices. The two models differ by the relative orientation of the helices. The model proposed by Simmerman et al. (H.K. Simmerman, Y.M. Kobayashi, J.M. Autry, and L.R. Jones, 1996, J. Biol. Chem. 71:5941-5946), in which:the coiled coil is stabilized by a leucine-isoleucine zipper, is similar to the transmembrane pentamer structure of the cartilage oligomeric membrane protein determined recently by x-ray (V. Malashkevich, R. Kammerer, V. Efimov, T. Schulthess, and J. Engel, 1996, Science 274:761-765). In the model proposed by Adams et al. (P.D. Adams, I.T. Arkin, D.M. Engelman, and A.T. Brunger, 1995, Nature Struct. Biol. 2:154-162), the helices in the coiled coil have a different relative orientation, i.e., are rotated clockwise by similar to 50 degrees. It was possible to overlap and connect the structure of phospholamban[1-36] derived in the present study to the two transmembrane pentamer models proposed. In this way two models:of the Whole phospholamban in its pentameric form were generated; When our structure was connected to the leucine-isoleucin zipper model, the inner side of the cytoplasmic domain of the pentamer (where the;helices face one another) was lined by polar residues (Gln23, Gln26, and Asn30), whereas the five Arg25 side chains were on the outer side. On the contrary, when our structure was connected to the other transmembrane model,in the inner side of the cytoplasmic domain of the pentamer, the five Arg25 residues formed a highly charged cluster.
引用
收藏
页码:1784 / 1795
页数:12
相关论文
共 72 条
[1]   COMPUTATIONAL SEARCHING AND MUTAGENESIS SUGGEST A STRUCTURE FOR THE PENTAMERIC TRANSMEMBRANE DOMAIN OF PHOSPHOLAMBAN [J].
ADAMS, PD ;
ARKIN, IT ;
ENGELMAN, DM ;
BRUNGER, AT .
NATURE STRUCTURAL BIOLOGY, 1995, 2 (02) :154-162
[2]   2-DIMENSIONAL SPECTROSCOPY - APPLICATION TO NUCLEAR MAGNETIC-RESONANCE [J].
AUE, WP ;
BARTHOLDI, E ;
ERNST, RR .
JOURNAL OF CHEMICAL PHYSICS, 1976, 64 (05) :2229-2246
[3]   Functional co-expression of the canine cardiac Ca2+ pump and phospholamban in Spodoptera frugiperda (Sf21) cells reveals new insights on ATPase regulation [J].
Autry, JM ;
Jones, LR .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (25) :15872-15880
[4]   Temperature dependence of H-1 chemical shifts in proteins [J].
Baxter, NJ ;
Williamson, MP .
JOURNAL OF BIOMOLECULAR NMR, 1997, 9 (04) :359-369
[5]   Structure and functions of channel-forming peptides: Magainins, cecropins, melittin and alamethicin [J].
Bechinger, B .
JOURNAL OF MEMBRANE BIOLOGY, 1997, 156 (03) :197-211
[6]   PROTEIN DATA BANK - COMPUTER-BASED ARCHIVAL FILE FOR MACROMOLECULAR STRUCTURES [J].
BERNSTEIN, FC ;
KOETZLE, TF ;
WILLIAMS, GJB ;
MEYER, EF ;
BRICE, MD ;
RODGERS, JR ;
KENNARD, O ;
SHIMANOUCHI, T ;
TASUMI, M .
JOURNAL OF MOLECULAR BIOLOGY, 1977, 112 (03) :535-542
[7]   DETERMINATION OF BIOMOLECULAR STRUCTURES FROM PROTON-PROTON NOES USING A RELAXATION MATRIX APPROACH [J].
BOELENS, R ;
KONING, TMG ;
KAPTEIN, R .
JOURNAL OF MOLECULAR STRUCTURE, 1988, 173 :299-311
[8]   COHERENCE TRANSFER BY ISOTROPIC MIXING - APPLICATION TO PROTON CORRELATION SPECTROSCOPY [J].
BRAUNSCHWEILER, L ;
ERNST, RR .
JOURNAL OF MAGNETIC RESONANCE, 1983, 53 (03) :521-528
[9]   3-DIMENSIONAL STRUCTURE OF PROTEINS DETERMINED BY MOLECULAR-DYNAMICS WITH INTERPROTON DISTANCE RESTRAINTS - APPLICATION TO CRAMBIN [J].
BRUNGER, AT ;
CLORE, GM ;
GRONENBORN, AM ;
KARPLUS, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1986, 83 (11) :3801-3805
[10]   COMPLETE ASSIGNMENT OF THE H-1 NUCLEAR MAGNETIC-RESONANCE SPECTRUM OF FRENCH BEAN PLASTOCYANIN - APPLICATION OF AN INTEGRATED APPROACH TO SPIN SYSTEM-IDENTIFICATION IN PROTEINS [J].
CHAZIN, WJ ;
RANCE, M ;
WRIGHT, PE .
JOURNAL OF MOLECULAR BIOLOGY, 1988, 202 (03) :603-622