Plant gene networks in osmotic stress response: From genes to regulatory networks

被引:94
作者
Tran, Lam-Son Phan [1 ]
Nakashima, Kazuo
Shinozaki, Kazuo
Yamaguchi-Shinozaki, Kazuko
机构
[1] Japan Int Res Ctr Agr Sci, Biol Resources Div, Tsukuba, Ibaraki, Japan
[2] RIKEN, Plant Sci Ctr, Tsurumi Ku, Yokohama, Kanagawa, Japan
[3] Core Res Evolut Sci & Technol, Kawaguchi, Saitama, Japan
[4] Univ Tokyo, Grad Sch Agr & Life Sci, Lab Plant Mol Physiol, Bunkyo Ku, Tokyo, Japan
来源
OSMOSENSING AND OSMOSIGNALING | 2007年 / 428卷
关键词
D O I
10.1016/S0076-6879(07)28006-1
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Because of their sessile nature, plants grown in a dynamic climate have evolved a range of adaptations that enable them to survive in various environmental stress conditions during growth and development. Plants respond to environmental stresses at both cellular and molecular levels by altering the expression of many genes via a complexity of signaling pathways. These pathways begin with signal perception and end with the expression of stress-responsive target genes. Ultimately, the selective upregulation of target genes leads to the alteration of physiological response so as to confer tolerance of the stress. In the signal transduction network, various regulatory and functional proteins function collectively to ensure survival of the plants. This chapter summarizes the methodology used to dissect gene regulatory networks involved in the response to osmotic stresses, such as drought and high salinity.
引用
收藏
页码:109 / 128
页数:20
相关论文
共 59 条
[1]   Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling [J].
Abe, H ;
Urao, T ;
Ito, T ;
Seki, M ;
Shinozaki, K ;
Yamaguchi-Shinozaki, K .
PLANT CELL, 2003, 15 (01) :63-78
[2]   Role of Arabidopsis MYC and MYB homologs in drought- and abscisic acid-regulated gene expression [J].
Abe, H ;
YamaguchiShinozaki, K ;
Urao, T ;
Iwasaki, T ;
Hosokawa, D ;
Shinozaki, K .
PLANT CELL, 1997, 9 (10) :1859-1868
[3]   Genes commonly regulated by water-deficit stress in Arabidopsis thaliana [J].
Bray, EA .
JOURNAL OF EXPERIMENTAL BOTANY, 2004, 55 (407) :2331-2341
[4]  
CAO H, 1994, PLANT CELL, V6, P1583, DOI 10.1105/tpc.6.11.1583
[5]   Engineered GFP as a vital reporter in plants [J].
Chiu, WL ;
Niwa, Y ;
Zeng, W ;
Hirano, T ;
Kobayashi, H ;
Sheen, J .
CURRENT BIOLOGY, 1996, 6 (03) :325-330
[6]   ABFs, a family of ABA-responsive element binding factors [J].
Choi, HI ;
Hong, JH ;
Ha, JO ;
Kang, JY ;
Kim, SY .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (03) :1723-1730
[7]   Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway [J].
Fowler, S ;
Thomashow, MF .
PLANT CELL, 2002, 14 (08) :1675-1690
[8]   A dehydration-induced NAC protein, RD26, is involved in a novel ABA-dependent stress-signaling pathway [J].
Fujita, M ;
Fujita, Y ;
Maruyama, K ;
Seki, M ;
Hiratsu, K ;
Ohme-Takagi, M ;
Tran, LSP ;
Yamaguchi-Shinozaki, K ;
Shinozaki, K .
PLANT JOURNAL, 2004, 39 (06) :863-876
[9]   AREB1 is a transcription activator of novel ABRE-dependent ABA signaling that enhances drought stress tolerance in Arabidopsis [J].
Fujita, Y ;
Fujita, M ;
Satoh, R ;
Maruyama, K ;
Parvez, MM ;
Seki, M ;
Hiratsu, K ;
Ohme-Takagi, M ;
Shinozaki, K ;
Yamaguchi-Shinozaki, K .
PLANT CELL, 2005, 17 (12) :3470-3488
[10]   Abscisic acid-dependent multisite phosphorylation regulates the activity of a transcription activator AREB1 [J].
Furihata, T ;
Maruyama, K ;
Fujita, Y ;
Umezawa, T ;
Yoshida, R ;
Shinozaki, K ;
Yamaguchi-Shinozaki, K .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (06) :1988-1993