Interference by Huntingtin and atrophin-1 with CBP-mediated transcription leading to cellular toxicity

被引:852
作者
Nucifora, FC
Sasaki, M
Peters, MF
Huang, H
Cooper, JK
Yamada, M
Takahashi, H
Tsuji, S
Troncoso, J
Dawson, VL
Dawson, TM [1 ]
Ross, CA
机构
[1] Johns Hopkins Univ, Sch Med, Dept Psychiat, Div Neurobiol, Baltimore, MD 21205 USA
[2] Johns Hopkins Univ, Sch Med, Program Cellular & Mol Med, Baltimore, MD 21205 USA
[3] Johns Hopkins Univ, Sch Med, Dept Neurol, Baltimore, MD 21205 USA
[4] Johns Hopkins Univ, Sch Med, Dept Neurosci, Baltimore, MD 21205 USA
[5] Johns Hopkins Univ, Sch Med, Dept Physiol, Baltimore, MD 21205 USA
[6] Johns Hopkins Univ, Sch Med, Dept Neuropathol, Baltimore, MD 21205 USA
[7] Niigata Univ, Brain Res Inst, Dept Pathol & Neurol, Niigata 9518585, Japan
关键词
D O I
10.1126/science.1056784
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Expanded polyglutamine repeats have been proposed to cause neuronal degeneration in Huntington's disease (HD) and related disorders, through abnormal interactions with other proteins containing short polyglutamine tracts such as the transcriptional coactivator CREB binding protein, CBP. We found that CBP was depleted from its normal nuclear Location and was present in polyglutamine aggregates in HD cell culture models, HD transgenic: mice, and human HD postmortem brain. Expanded polyglutamine repeats specifically interfere with CBP-activated gene transcription, and overexpression of CBP rescued polyglutamine-induced neuronal toxicity. Thus, polyglutamine-mediated interference with CBP-regulated gene transcription may constitute a genetic gain of function, underlying the pathogenesis of polyglutamine disorders.
引用
收藏
页码:2423 / 2428
页数:6
相关论文
共 44 条
[1]   Intranuclear neuronal inclusions in Huntington's disease and dentatorubral and pallidoluysian atrophy: Correlation between the density of inclusions and IT15 CAG triplet repeat length [J].
Becher, MW ;
Kotzuk, JA ;
Sharp, AH ;
Davies, SW ;
Bates, GP ;
Price, DL ;
Ross, CA .
NEUROBIOLOGY OF DISEASE, 1998, 4 (06) :387-397
[2]   Cell survival promoted by the Ras-MAPK signaling pathway by transcription-dependent and -independent mechanisms [J].
Bonni, A ;
Brunet, A ;
West, AE ;
Datta, SR ;
Takasu, MA ;
Greenberg, ME .
SCIENCE, 1999, 286 (5443) :1358-1362
[3]   CBP: A signal-regulated transcriptional coactivator controlled by nuclear calcium and CaM kinase IV [J].
Chawla, S ;
Hardingham, GE ;
Quinn, DR ;
Bading, H .
SCIENCE, 1998, 281 (5382) :1505-1509
[4]   PHOSPHORYLATED CREB BINDS SPECIFICALLY TO THE NUCLEAR-PROTEIN CBP [J].
CHRIVIA, JC ;
KWOK, RPS ;
LAMB, N ;
HAGIWARA, M ;
MONTMINY, MR ;
GOODMAN, RH .
NATURE, 1993, 365 (6449) :855-859
[5]   Truncated N-terminal fragments of huntingtin with expanded glutamine repeats form nuclear and cytoplasmic aggregates in cell culture [J].
Cooper, JK ;
Schilling, G ;
Peters, MF ;
Herring, WJ ;
Sharp, AH ;
Kaminsky, Z ;
Masone, J ;
Khan, FA ;
Delanoy, M ;
Borchelt, DR ;
Dawson, VL ;
Dawson, TM ;
Ross, CA .
HUMAN MOLECULAR GENETICS, 1998, 7 (05) :783-790
[6]   Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation [J].
Davies, SW ;
Turmaine, M ;
Cozens, BA ;
DiFiglia, M ;
Sharp, AH ;
Ross, CA ;
Scherzinger, E ;
Wanker, EE ;
Mangiarini, L ;
Bates, GP .
CELL, 1997, 90 (03) :537-548
[7]   Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain [J].
DiFiglia, M ;
Sapp, E ;
Chase, KO ;
Davies, SW ;
Bates, GP ;
Vonsattel, JP ;
Aronin, N .
SCIENCE, 1997, 277 (5334) :1990-1993
[8]   Brain-derived neurotrophic factor in Huntington disease [J].
Ferrer, I ;
Goutan, E ;
Marín, C ;
Rey, MJ ;
Ribalta, T .
BRAIN RESEARCH, 2000, 866 (1-2) :257-261
[9]   DISTINCT ROLES FOR BFGF AND NT-3 IN THE REGULATION OF CORTICAL NEUROGENESIS [J].
GHOSH, A ;
GREENBERG, ME .
NEURON, 1995, 15 (01) :89-103
[10]  
Gonzalez-Zulueta M, 1998, J NEUROSCI, V18, P2040