Autonomous atmospheric compensation (AAC) of high resolution hyperspectral thermal infrared remote-sensing imagery

被引:88
作者
Gu, DG [1 ]
Gillespie, AR
Kahle, AB
Palluconi, FD
机构
[1] Remote Sensing Syst, Santa Rosa, CA 95403 USA
[2] Univ Washington, Dept Geol Sci, Seattle, WA 98195 USA
[3] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2000年 / 38卷 / 06期
关键词
atmospheric compensation; emissivity; land surface temperature; precipitable water; remote sensing; thermal infrared;
D O I
10.1109/36.885203
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Atmospheric emission and absorption significantly modify the thermal infrared (TIR) radiation spectra from Earth's land surface. A new algorithm, autonomous atmospheric compensation (AAC), was developed to estimate and compensate for the atmospheric effects, The algorithm estimates from hyperspectral TIR measurements two atmospheric index parameters, the transmittance ratio, and the path radiance difference between strong and weak absorption channels near the 11.73 mum water band. These two parameters depend on the atmospheric water and temperature distribution profiles, and thus, from them, the complete atmospheric transmittance and path radiance spectra can be predicted. The AAC algorithm is self-contained and needs no supplementary data. Its accuracy depends largely on instrument characteristics, particularly spectral and spatial resolution. Atmospheric conditions, especially humidity and temperature, and other meteorological parameters, also have some secondary impacts. The AAC algorithm was successfully applied to a hyperspectral TIR data set, and the results suggest its accuracy is comparable to that based on the in situ radiosonde measurements.
引用
收藏
页码:2557 / 2570
页数:14
相关论文
共 26 条
[1]  
BECKER F, 1995, REMOTE SENS REV, V12, P225, DOI DOI 10.1080/02757259509532286
[2]  
Borel C. C., 1998, INT GEOSC REM SENS S
[3]  
CARRERE V, 1990, P 2 AIRB VIS INFR IM, P107
[4]   Thermal imagery spectral analysis [J].
Collins, BH ;
Olsen, RC ;
Hackwell, J .
IMAGING SPECTROMETRY III, 1997, 3118 :94-105
[5]  
COTTLE C, 1993, INT J REMOTE SENS, V14, P2025
[6]  
ECK TF, 1994, INT J REMOTE SENS, V15, P567, DOI 10.1080/01431169408954097
[7]   A temperature and emissivity separation algorithm for Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images [J].
Gillespie, A ;
Rokugawa, S ;
Matsunaga, T ;
Cothern, JS ;
Hook, S ;
Kahle, AB .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1998, 36 (04) :1113-1126
[8]  
Gillespie A. R., 1986, TIMS DAT US WORKSH P, P29
[9]   LWIR/MWIR imaging hyperspectral sensor for airborne and ground-based remote sensing [J].
Hackwell, JA ;
Warren, DW ;
Bongiovi, RP ;
Hansel, SJ ;
Hayhurst, TL ;
Mabry, DJ ;
Sivjee, MG ;
Skinner, JW .
IMAGING SPECTROMETRY II, 1996, 2819 :102-107
[10]  
HASKINS R, 1997, ALGORITHM THEORETICA