Percolation-tunneling modeling for the study of the electric conductivity in LiFePO4 based Li-ion battery cathodes

被引:44
作者
Awarke, Ali [1 ]
Lauer, Sven [2 ]
Pischinger, Stefan [1 ]
Wittler, Michael [1 ]
机构
[1] Rhein Westfal TH Aachen, Inst Combust Engines, D-52062 Aachen, Germany
[2] FEV Motorentech GmbH, D-52078 Aachen, Germany
关键词
Li-ion; Cathode; Conductivity; Percolation; Tunneling; LiFePO4; DISCRETE PARTICLE SIMULATION; TRANSPORT-PROPERTIES; PARTICULATE SYSTEMS; CARBON COATINGS; COMPOSITES; MORPHOLOGY; ADDITIVES; CAPACITY; IMPACT;
D O I
10.1016/j.jpowsour.2010.07.048
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this work a percolation-tunneling based model is developed and used to study the electrical conductivity of LiFePO4 composite Li-ion battery cathodes. The active and conductive additive particles are explicitly represented using a random hybrid geometric-mechanical packing algorithm, while the inter-particle electric transport is achieved by including electron tunneling effects. The model is adjusted to the experimental data of a PVDF/C composite with different mixing ratios. The performed study aims to capture the variation of the conductivity of the LiFePO4 cathode with particle sizes, carbon black particles wt.% and carbon coating wt.%. It is found that ultra fine carbon-free nanosized particles (similar to 50 nm), which are favorable for improved diffusion, would require a relatively high amount of carbon black (15 wt.%) putting at risk the gravimetric capacity of the cell. On the other hand, particles with 1 wt.% continuous carbon coating delivers already sufficient conductivity for all particle sizes without any additives. The further addition of conductive phases is at the risk of redundancy in view of conductivity enhancements. Although continuous carbon coating with loading as low as 1 wt.% is thought to be the most efficient way to achieve electric conductivity, its manufacturability and effect on Li ion diffusion remain to be assessed. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:405 / 411
页数:7
相关论文
共 47 条
[1]   Development of high capacity, high rate lithium ion batteries utilizing metal fiber conductive additives [J].
Ahn, S ;
Kim, Y ;
Kim, KJ ;
Kim, TH ;
Lee, H ;
Kim, MH .
JOURNAL OF POWER SOURCES, 1999, 81 :896-901
[2]   Composite cathode structure/property relationships [J].
Babinec, S. ;
Tang, H. ;
Talik, A. ;
Hughes, S. ;
Meyers, G. .
JOURNAL OF POWER SOURCES, 2007, 174 (02) :508-514
[3]   TUNNELING AND NONUNIVERSAL CONDUCTIVITY IN COMPOSITE-MATERIALS [J].
BALBERG, I .
PHYSICAL REVIEW LETTERS, 1987, 59 (12) :1305-1308
[4]   Percolation and tunneling in composite materials [J].
Balberg, I ;
Azulay, D ;
Toker, D ;
Millo, O .
INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2004, 18 (15) :2091-2121
[5]   Conductivity improvements to spray-produced LiFePO4 by addition of a carbon source [J].
Bewlay, SL ;
Konstantinov, K ;
Wang, GX ;
Dou, SX ;
Liu, HK .
MATERIALS LETTERS, 2004, 58 (11) :1788-1791
[6]   Preparation and performances of LiFePO4 cathode in aqueous solvent with polyacrylic acid as a binder [J].
Cai, Z. P. ;
Liang, Y. ;
Li, W. S. ;
Xing, L. D. ;
Liao, Y. H. .
JOURNAL OF POWER SOURCES, 2009, 189 (01) :547-551
[7]   Selection of conductive additives in Li-ion battery cathodes - A numerical study [J].
Chen, Y.-H. ;
Wang, C.-W. ;
Liu, G. ;
Song, X.-Y. ;
Battaglia, V. S. ;
Sastry, A. M. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2007, 154 (10) :A978-A986
[8]   Reducing carbon in LiFePO4/C composite electrodes to maximize specific energy, volumetric energy, and tap density [J].
Chen, ZH ;
Dahn, JR .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2002, 149 (09) :A1184-A1189
[9]   Electronically conductive phospho-olivines as lithium storage electrodes [J].
Chung, SY ;
Bloking, JT ;
Chiang, YM .
NATURE MATERIALS, 2002, 1 (02) :123-128
[10]   Electrochemical preparation and characterisation of LizMoS2-x nanotubes [J].
Dominko, R ;
Gaberscek, M ;
Arcon, D ;
Mrzel, A ;
Remskar, M ;
Mihailovic, D ;
Pejovnik, S ;
Jamnik, J .
ELECTROCHIMICA ACTA, 2003, 48 (20-22) :3079-3084