Centrin 2 stimulates nucleotide excision repair by interacting with xeroderma pigmentosum group C protein

被引:203
作者
Nishi, R
Okuda, Y
Watanabe, E
Mori, T
Iwai, S
Masutani, C
Sugasawa, K
Hanaoka, F
机构
[1] RIKEN, Discovery Res Inst, Cellular Physiol Lab, Wako, Saitama 3510198, Japan
[2] Osaka Univ, Grad Sch Pharmaceut Sci, Osaka, Japan
[3] Osaka Univ, Grad Sch Frontier Biosci, Osaka, Japan
[4] Nara Med Univ, Radioisotope Ctr, Nara, Japan
[5] Osaka Univ, Grad Sch Engn Sci, Osaka, Japan
关键词
D O I
10.1128/MCB.25.13.5664-5674.2005
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Xeroderma pigmentosum group C (XPC) protein plays a key role in DNA damage recognition in global genome nucleotide excision repair (NER). The protein forms in vivo a heterotrimeric complex involving one of the two human homologs of Saccharomyces cerevisiae Rad23p and centrin 2, a centrosomal protein. Because centrin 2 is dispensable for the cell-free NER reaction, its role in NER has been unclear. Binding experiments with a series of truncated XPC proteins allowed the centrin 2 binding domain to be mapped to a presumed alpha-helical region near the C terminus, and three amino acid substitutions in this domain abrogated interaction with centrin 2. Human cell lines stably expressing the mutant XPC protein exhibited a significant reduction in global genome NER activity. Furthermore, centrin 2 enhanced the cell-free NER dual incision and damaged DNA binding activities of XPC, which likely require physical interaction between XPC and centrin 2. These results reveal a novel vital function for centrin 2 in NER, the potentiation of damage recognition by XPC.
引用
收藏
页码:5664 / 5674
页数:11
相关论文
共 75 条
[1]   Centrosome protein centrin 2/caltractin 1 is part of the xeroderma pigmentosum group C complex that initiates global genome nucleotide excision repair [J].
Araki, M ;
Masutani, C ;
Takemura, M ;
Uchida, A ;
Sugasawa, K ;
Kondoh, J ;
Ohkuma, Y ;
Hanaoka, F .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (22) :18665-18672
[2]   Reconstitution of damage DNA excision reaction from SV40 minichromosomes with purified nucleotide excision repair proteins [J].
Araki, M ;
Masutani, C ;
Maekawa, T ;
Watanabe, Y ;
Yamada, A ;
Kusumoto, R ;
Sakai, D ;
Sugasawa, K ;
Ohkuma, Y ;
Hanaoka, F .
MUTATION RESEARCH-DNA REPAIR, 2000, 459 (02) :147-160
[3]  
Araújo SJ, 2000, GENE DEV, V14, P349
[4]   Strong functional interactions of TFIIH with XPC and XPG in human DNA nucleotide excision repair, without a preassembled repairosome [J].
Araújo, SJ ;
Nigg, EA ;
Wood, RD .
MOLECULAR AND CELLULAR BIOLOGY, 2001, 21 (07) :2281-2291
[5]   Stable binding of human XPC complex to irradiated DNA confers strong discrimination for damaged sites [J].
Batty, D ;
Rapic'-Otrin, V ;
Levine, AS ;
Wood, RD .
JOURNAL OF MOLECULAR BIOLOGY, 2000, 300 (02) :275-290
[6]   YEAST GENE REQUIRED FOR SPINDLE POLE BODY DUPLICATION - HOMOLOGY OF ITS PRODUCT WITH CA-2+-BINDING PROTEINS [J].
BAUM, P ;
FURLONG, C ;
BYERS, B .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1986, 83 (15) :5512-5516
[7]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[8]   Molecular mechanism of nucleotide excision repair [J].
de Laat, WL ;
Jaspers, NGJ ;
Hoeijmakers, JHJ .
GENES & DEVELOPMENT, 1999, 13 (07) :768-785
[9]   Structural basis for the activation of anthrax adenylyl cyclase exotoxin by calmodulin [J].
Drum, CL ;
Yan, SZ ;
Bard, J ;
Shen, YQ ;
Lu, D ;
Soelaiman, S ;
Grabarek, Z ;
Bohm, A ;
Tang, WJ .
NATURE, 2002, 415 (6870) :396-402
[10]   Cation- and peptide-binding properties of human centrin 2 [J].
Durussel, I ;
Blouquit, Y ;
Middendorp, S ;
Cracscu, CT ;
Cox, JA .
FEBS LETTERS, 2000, 472 (2-3) :208-212