A Computational Framework for Uncertainty Quantification and Stochastic Optimization in Unit Commitment With Wind Power Generation

被引:186
作者
Constantinescu, Emil M. [1 ]
Zavala, Victor M. [1 ]
Rocklin, Matthew [2 ]
Lee, Sangmin [3 ]
Anitescu, Mihai [1 ]
机构
[1] Argonne Natl Lab, Math & Comp Sci Div, Argonne, IL 60439 USA
[2] Univ Chicago, Dept Comp Sci, Chicago, IL 60637 USA
[3] NYU, Courant Inst Math Sci, New York, NY 10012 USA
关键词
Closed-loop; economic dispatch; unit commitment; weather forecasting; wind; PREDICTION; MODEL;
D O I
10.1109/TPWRS.2010.2048133
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present a computational framework for integrating a state-of-the-art numerical weather prediction (NWP) model in stochastic unit commitment/economic dispatch formulations that account for wind power uncertainty. We first enhance the NWP model with an ensemble-based uncertainty quantification strategy implemented in a distributed-memory parallel computing architecture. We discuss computational issues arising in the implementation of the framework and validate the model using real wind-speed data obtained from a set of meteorological stations. We build a simulated power system to demonstrate the developments.
引用
收藏
页码:431 / 441
页数:11
相关论文
共 24 条
[1]  
[Anonymous], 2009, DOEGO1020082567 OFF
[2]  
[Anonymous], 2003, ATMOSPHERIC MODELING
[3]  
CAROE CC, 1998, 9811 ZIB SC
[4]   A computationally efficient mixed-integer linear formulation for the thermal unit commitment problem [J].
Carrion, Miguel ;
Arroyo, Jose M. .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2006, 21 (03) :1371-1378
[5]  
CONSTANTINESCU E, 2009, ANLMCSTM309
[6]  
El-Fouly T.H.M., 2006, POW ENG SOC GEN M MO, P7
[7]   Short-term prediction of the aggregated power output of wind farms -: a statistical analysis of the reduction of the prediction error by spatial smoothing effects [J].
Focken, U ;
Lange, M ;
Mönnich, K ;
Waldl, HP ;
Beyer, HG ;
Luig, A .
JOURNAL OF WIND ENGINEERING AND INDUSTRIAL AERODYNAMICS, 2002, 90 (03) :231-246
[8]  
Goez J., 2008, RC24713 IBM
[9]  
JUBAN J., 2008, P EUR WIND EN C EWEC
[10]  
Kalnay E, 1996, B AM METEOROL SOC, V77, P437, DOI 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO