Electrochemical, textural and microstructural effects of mechanical grinding on graphitized petroleum coke for lithium and sodium batteries

被引:57
作者
Alcántara, R
Lavela, P
Ortiz, GF
Tirado, JL
Menéndez, R
Santamaría, R
Jiménez-Mateos, JM
机构
[1] Lab Quim Inorgan, Cordoba 14071, Spain
[2] INCAR, Oviedo, Spain
[3] REPSOL YPF, Mostoles, Spain
关键词
graphite; petroleum coke; grinding; X-ray diffraction; electrochemical properties;
D O I
10.1016/S0008-6223(03)00432-9
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A graphitized coke material obtained from petroleum residua was mechanically ground at different milling times between 0 and 100 It. Electrochemical reactions with both lithium and sodium are significantly altered as a function of grinding time. Short-time ball milling of graphite (I and 5 h) induces a limited decrease in particle size and an increase in microstrain content. Simultaneously, alkali metal intercalation and electrolyte decomposition are hindered, and thus the irreversible and reversible capacities decrease. For longer milling time (up to 100 h), average crystallite size decreases and particles adopt a lamellar shape. Simultaneously, the irreversible capacity increases and correlates with an increase of the resistance, as obtained by impedance spectroscopy. Ex-situ XRD shows that extensively ground graphite samples need a higher discharge specific capacity to reach the formation of n-stages as compared to non-ground graphite, this being indicative of lithium incorporation in energetically different sites to the interlayer space. Sodium storage capacity increases with prolonged grinding time. This effect is shown here for the first time for graphitized cokes. (C) 2003 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3003 / 3013
页数:11
相关论文
共 46 条
  • [1] Carbon black:: a promising electrode material for sodium-ion batteries
    Alcántara, R
    Jiménez-Mateos, JM
    Lavela, P
    Tirado, JL
    [J]. ELECTROCHEMISTRY COMMUNICATIONS, 2001, 3 (11) : 639 - 642
  • [2] Negative electrodes for lithium- and sodium-ion batteries obtained by heat-treatment of petroleum cokes below 1000°C
    Alcántara, R
    Mateos, JMJ
    Tirado, JL
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2002, 149 (02) : A201 - A205
  • [3] 13C, 1H, 6Li magic-angle spinning nuclear magnetic resonance, electron paramagnetic resonance, and Fourier transform infrared study of intercalation electrodes based in ultrasoft carbons obtained below 3100 K
    Alcántara, R
    Madrigal, FJF
    Lavela, P
    Tirado, JL
    Mateos, JMJ
    Stoyanova, R
    Zhecheva, E
    [J]. CHEMISTRY OF MATERIALS, 1999, 11 (01) : 52 - 60
  • [4] Characterisation of mesocarbon microbeads (MCMB) as active electrode material in lithium and sodium cells
    Alcántara, R
    Madrigal, FJF
    Lavela, P
    Tirado, JL
    Mateos, JMJ
    de Salazar, CG
    Stoyanova, R
    Zhecheva, E
    [J]. CARBON, 2000, 38 (07) : 1031 - 1041
  • [5] On the correlation between surface chemistry and performance of graphite negative electrodes for Li ion batteries
    Aurbach, D
    Markovsky, B
    Weissman, I
    Levi, E
    Ein-Eli, Y
    [J]. ELECTROCHIMICA ACTA, 1999, 45 (1-2) : 67 - 86
  • [6] Electrochemical Li-insertion processes into carbons produced by milling graphitic powders: The impact of the carbons' surface chemistry
    Aurbach, D
    Markovsky, B
    Nimberger, A
    Levi, E
    Gofer, Y
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2002, 149 (02) : A152 - A161
  • [7] THE CORRELATION BETWEEN THE SURFACE-CHEMISTRY AND THE PERFORMANCE OF LI-CARBON INTERCALATION ANODES FOR RECHARGEABLE ROCKING-CHAIR TYPE BATTERIES
    AURBACH, D
    EINELI, Y
    CHUSID, O
    CARMELI, Y
    BABAI, M
    YAMIN, H
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1994, 141 (03) : 603 - 611
  • [8] A sodium-ion cell based on the fluorophosphate compound NaVPO4F
    Barker, J
    Saidi, MY
    Swoyer, JL
    [J]. ELECTROCHEMICAL AND SOLID STATE LETTERS, 2003, 6 (01) : A1 - A4
  • [9] THEORETICAL-STUDY OF LITHIUM INTERCALATED GRAPHITE
    BOEHM, RC
    BANERJEE, A
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1992, 96 (02) : 1150 - 1157
  • [10] Anodic performances of mesocarbon microbeads (MCMB) prepared from synthetic naphthalene isotropic pitch
    Chang, YC
    Sohn, HJ
    Ku, CH
    Wang, YG
    Korai, Y
    Mochida, I
    [J]. CARBON, 1999, 37 (08) : 1285 - 1297