Targeting the aluminum tolerance gene Alt3 region in rye, using rice/rye micro-colinearity

被引:22
作者
Miftahudin, T
Chikmawati, T
Ross, K
Scoles, GJ
Gustafson, JP [1 ]
机构
[1] Univ Missouri, USDA, ARS, Plant Genet Res Unit, Columbia, MO 65211 USA
[2] Univ Missouri, Dept Agron, Columbia, MO 65211 USA
[3] Bogor Agr Univ, Dept Biol, Bogor 16144, Indonesia
[4] Univ Saskatchewan, Dept Plant Sci, Saskatoon, SK S7N 5A8, Canada
关键词
D O I
10.1007/s00122-004-1909-0
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Characterization and manipulation of aluminum (Al) tolerance genes offers a solution to Al toxicity problems in crop cultivation on acid soil, which composes approximately 40% of all arable land. By exploiting the rice (Oryza sativa L.)/rye (Secale cereale L.) syntenic relationship, the potential for map-based cloning of genes controlling Al tolerance in rye (the most Al-tolerant cereal) was explored. An attempt to clone an Al tolerance gene (Alt3) from rye was initiated by using DNA markers flanking the rye Alt3 gene, from many cereals. Two rice-derived, PCR-based markers flanking the Alt3 gene, B1 and B4, were used to screen 1,123 plants of a rye F-2 population segregating for Alt3. Fifteen recombinant plants were identified. Four additional RFLP markers developed from rice genes/putative genes, spanning 10 kb of a 160-kb rice BAC, were mapped to the Alt3 region. Two rice markers flanked the Alt3 locus at a distance of 0.05 cM, while two others cosegregated with it. The rice/rye micro-colinearity worked very well to delineate and map the Alt3 gene region in rye. A rye fragment suspected to be part of the Alt3 candidate gene was identified, but at this level, the rye/rice microsynteny relationship broke down. Because of sequence differences between rice and rye and the complexity of the rye sequence, we have been unable to clone a full-length candidate gene in rye. Further attempts to clone a full-length rye Alt3 candidate gene will necessitate the creation of a rye large-insert library.
引用
收藏
页码:906 / 913
页数:8
相关论文
共 39 条
[1]   HOMOEOLOGOUS RELATIONSHIPS OF RICE, WHEAT AND MAIZE CHROMOSOMES [J].
AHN, S ;
ANDERSON, JA ;
SORRELLS, ME ;
TANKSLEY, SD .
MOLECULAR & GENERAL GENETICS, 1993, 241 (5-6) :483-490
[2]   CHROMOSOME LOCATION OF GENES-CONTROLLING ALUMINUM TOLERANCE IN WHEAT, RYE, AND TRITICALE [J].
ANIOL, A ;
GUSTAFSON, JP .
CANADIAN JOURNAL OF GENETICS AND CYTOLOGY, 1984, 26 (06) :701-705
[3]  
Arumuganathan K, 1991, PLANT MOL BIOL REP, V9, P208, DOI [DOI 10.1007/BF02672069, 10.1007/BF02672069]
[4]   Numerous small rearrangements of gene content, order and orientation differentiate grass genomes [J].
Bennetzen, JL ;
Ramakrishna, W .
PLANT MOLECULAR BIOLOGY, 2002, 48 (05) :821-827
[5]   Grass genomes [J].
Bennetzen, JL ;
SanMiguel, P ;
Chen, MS ;
Tikhonov, A ;
Francki, M ;
Avramova, Z .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (05) :1975-1978
[6]  
BUELL CR, 2002, UNPUB ORYZA SATIVA C
[7]   Microcolinearity in sh2-homologous regions of the maize, rice, and sorghum genomes [J].
Chen, M ;
SanMiguel, P ;
deOliveira, AC ;
Woo, SS ;
Zhang, H ;
Wing, RA ;
Bennetzen, JL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (07) :3431-3435
[8]  
Chen MS, 1998, GENETICS, V148, P435
[9]   POSITIONAL CLONING - LETS NOT CALL IT REVERSE ANYMORE [J].
COLLINS, FS .
NATURE GENETICS, 1992, 1 (01) :3-6
[10]   Different mechanisms of four aluminum (Al)-resistant transgenes for Al toxicity in Arabidopsis [J].
Ezaki, B ;
Katsuhara, M ;
Kawamura, M ;
Matsumoto, H .
PLANT PHYSIOLOGY, 2001, 127 (03) :918-927