Water-soluble organosulfur compounds of garlic inhibit fatty acid and triglyceride syntheses in cultured rat hepatocytes

被引:55
作者
Liu, LJ [1 ]
Yeh, YY [1 ]
机构
[1] Penn State Univ, Dept Nutr, University Pk, PA 16802 USA
关键词
D O I
10.1007/s11745-001-0734-4
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The putative hypolipidemic effect of garlic remains controversial. To gain further insight into the effect of garlic on lipid metabolism, the present study determined the inhibitory effects of water-soluble organosulfur compounds present in garlic on triglyceride (TG) and fatty acid synthesis in cultured rat hepatocytes. When incubated at 0.05 to 4.0 mmol/L. with cultured hepatocytes, S-allyl cysteine (SAC) and S-propyl cysteine (SAC) de creased [2-(14)C]acetate incorporation into triglyceride in a concentration-dependent fashion achieving a maximal inhibition at 4.0 mmol/L of 43 and 51%, respectively. The rate of [2-(14)C]acetate incorporation into phospholipids was depressed to a similar extent by SAC and SPC. SPC, SAG, S-ethyl cysteine (SEC), and gamma -glutamyl-S-methyl cysteine decreased [2-(14)C]acetate incorporation into fatty acid synthesis by 81, 59, 35, and 30%, respectively, at 2.0-4.0 mmol/L concentrations. Alliin, gamma -glutamyl-S-allyl cysteine, gamma -glutamyl-S-propyl cysteine S-allyl-N-acetyl cysteine, S-allylsulfonyl alanine, and S-methyl cysteine had no effect on fatty acid synthesis. The activities of lipogenic enzymes, fatty acid synthase (FAS), and glucose-6-phosphate dehydrogenase (C6PDH) were measured in cultured hepatocytes treated with the inhibitors. The activity of FAS in cells treated with 4.0 mmol/L SAC and SPC, respectively, was 32 and 27% lower than that of nontreated cells. Neither SAC nor SPC affected G6PDH activity. The results indicate that SAG, SEC, and SPC inhibit lipid biosynthesis in cultured rat hepatocytes, and further suggest that these Salk(en)yl cysteines of garlic impair triglyceride synthesis in part due to decreased de novo fatty acid synthesis resulting from inhibition on FAS. Whether tissue concentrations of active garlic components can achieve levels required to inhibit TG synthesis in vivo warrants further investigation.
引用
收藏
页码:395 / 400
页数:6
相关论文
共 42 条
[1]  
Agarwal KC, 1996, MED RES REV, V16, P111, DOI 10.1002/(SICI)1098-1128(199601)16:1&lt
[2]  
111::AID-MED4&gt
[3]  
3.0.CO
[4]  
2-5
[5]   Effect of a garlic oil preparation on serum lipoproteins and cholesterol metabolism - A randomized controlled trial [J].
Berthold, HK ;
Sudhop, T ;
von Bergmann, K .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 1998, 279 (23) :1900-1902
[6]   Effect of garlic (Allium sativum) on blood lipids, blood sugar, fibrinogen and fibrinolytic activity in patients with coronary artery disease [J].
Bordia, A ;
Verma, SK ;
Srivastava, KC .
PROSTAGLANDINS LEUKOTRIENES AND ESSENTIAL FATTY ACIDS, 1998, 58 (04) :257-263
[7]   An evaluation of garlic and onion as antithrombotic agents [J].
Bordia, T ;
Mohammed, N ;
Thomson, M ;
Ali, M .
PROSTAGLANDINS LEUKOTRIENES AND ESSENTIAL FATTY ACIDS, 1996, 54 (03) :183-186
[8]   Protective effect of chronic garlic intake on elastic properties of aorta in the elderly [J].
BreithauptGrogler, K ;
Ling, M ;
Boudoulas, H ;
Belz, GG .
CIRCULATION, 1997, 96 (08) :2649-2654
[9]   THE TRIGLYCERIDE ISSUE - A VIEW FROM FRAMINGHAM [J].
CASTELLI, WP .
AMERICAN HEART JOURNAL, 1986, 112 (02) :432-437
[10]  
CHAIT A, 1980, EUR J CLIN INVEST, V10, P17, DOI 10.1111/j.1365-2362.1980.tb00004.x