Evaluating evolutionary constraint on the rapidly evolving gene matK using protein composition

被引:29
作者
Barthet, Michelle M. [1 ,2 ]
Hilu, Khidir W. [2 ]
机构
[1] Univ Sydney, Sch Biol Sci, Sydney, NSW 2006, Australia
[2] Virginia Tech, Dept Biol Sci, Blacksburg, VA 24061 USA
基金
美国国家科学基金会;
关键词
matK; amino acid composition; functional constraint; phylogenetics; rapidly evolving gene;
D O I
10.1007/s00239-007-9060-6
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The rapidly evolving chloroplast matK gene has nucleotide and amino acid substitution rates suggestive of progression toward a pseudogene state. However, molecular evidence has demonstrated that matK is expressed and functional. We explore in this paper the underlying factors behind the mode and tempo of matK evolution that allow this protein coding gene to accommodate such elevated rates of substitution and yet maintain functionality. Conservative amino acid replacement may reconcile the fast evolutionary rate in matK with conservation in protein function. Based on this premise, we have examined putative amino acid sequences for MATK from across green plants to determine constraint on this protein as indicated by variation in composition of amino acid side chain category. Amino acids in the MATK ORF were divided into six categories based on chemical properties of their side chains: nonpolar, uncharged (pH 7), basic, acidic, aromatic, and "special" (amino acids that specifically affect protein structure, i.e., proline, glycine, and cysteine). The amount of standard deviation (SD) in side chain composition was used as a measure of variation and constraint, where a low SD implied high evolutionary constraint and a high SD implied low constraint. Further, we used secondary structure prediction to evaluate if conservation observed in side chain composition was reflected in stable predicted structure. The results of this study demonstrate evolutionary constraint on MATK, identify three regions of functional importance, show highly conserved secondary structure, and support the putative function of MATK as a group II intron maturase.
引用
收藏
页码:85 / 97
页数:13
相关论文
共 58 条
[1]   FUNCTIONAL CONSTRAINTS AND RBCL EVIDENCE FOR LAND PLANT PHYLOGENY [J].
ALBERT, VA ;
BACKLUND, A ;
BREMER, K ;
CHASE, MW ;
MANHART, JR ;
MISHLER, BD ;
NIXON, KC .
ANNALS OF THE MISSOURI BOTANICAL GARDEN, 1994, 81 (03) :534-567
[2]  
Alberts B., 2002, Molecular Biology of the Cell, V4th ed.
[3]  
Bailey TL., 1994, P 2 INT C INT SYST M, V2, P28
[4]   Expression of matK: Functional and evolutionary implications [J].
Barthet, Michelle A. ;
Hilu, Khidir W. .
AMERICAN JOURNAL OF BOTANY, 2007, 94 (08) :1402-1412
[5]  
Bateman A, 2002, NUCLEIC ACIDS RES, V30, P276, DOI [10.1093/nar/gkr1065, 10.1093/nar/gkp985, 10.1093/nar/gkh121]
[6]   Domain structure and three-dimensional model of a group II intron-encoded reverse transcriptase [J].
Blocker, FJH ;
Mohr, G ;
Conlan, LH ;
Qi, L ;
Belfort, M ;
Lambowitz, AM .
RNA, 2005, 11 (01) :14-28
[7]   METHODS AND ALGORITHMS FOR STATISTICAL-ANALYSIS OF PROTEIN SEQUENCES [J].
BRENDEL, V ;
BUCHER, P ;
NOURBAKHSH, IR ;
BLAISDELL, BE ;
KARLIN, S .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1992, 89 (06) :2002-2006
[8]   Leave it to the leaves: A molecular phylogenetic study of malaxideae (Epidendroideae, Orchidaceae) [J].
Cameron, KM .
AMERICAN JOURNAL OF BOTANY, 2005, 92 (06) :1025-1032
[9]   PHYLOGENETICS OF SEED PLANTS - AN ANALYSIS OF NUCLEOTIDE-SEQUENCES FROM THE PLASTID GENE RBCL [J].
CHASE, MW ;
SOLTIS, DE ;
OLMSTEAD, RG ;
MORGAN, D ;
LES, DH ;
MISHLER, BD ;
DUVALL, MR ;
PRICE, RA ;
HILLS, HG ;
QIU, YL ;
KRON, KA ;
RETTIG, JH ;
CONTI, E ;
PALMER, JD ;
MANHART, JR ;
SYTSMA, KJ ;
MICHAELS, HJ ;
KRESS, WJ ;
KAROL, KG ;
CLARK, WD ;
HEDREN, M ;
GAUT, BS ;
JANSEN, RK ;
KIM, KJ ;
WIMPEE, CF ;
SMITH, JF ;
FURNIER, GR ;
STRAUSS, SH ;
XIANG, QY ;
PLUNKETT, GM ;
SOLTIS, PS ;
SWENSEN, SM ;
WILLIAMS, SE ;
GADEK, PA ;
QUINN, CJ ;
EGUIARTE, LE ;
GOLENBERG, E ;
LEARN, GH ;
GRAHAM, SW ;
BARRETT, SCH ;
DAYANANDAN, S ;
ALBERT, VA .
ANNALS OF THE MISSOURI BOTANICAL GARDEN, 1993, 80 (03) :528-580
[10]  
Cuff JA, 2000, PROTEINS, V40, P502, DOI 10.1002/1097-0134(20000815)40:3<502::AID-PROT170>3.0.CO