Control of discrete-time chaotic systems via feedback linearization

被引:33
作者
Fuh, CC [1 ]
Tsai, HH
机构
[1] Natl Taiwan Ocean Univ, Dept Mech & Marine Engn, Chilung 20224, Taiwan
[2] Natl Cent Univ, Dept Mech Engn, Chungli 32054, Taiwan
关键词
D O I
10.1016/S0960-0779(00)00273-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An approach for controlling discrete-time chaotic systems by feedback linearization is proposed. This method can not only stabilize unstable periodic orbits embedded in a strange attractor, but also can be applied even if the real trajectory is far from the target one. A Henon map with different operation conditions is implemented to demonstrate the feasibility of the proposed method. (C) 2001 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:285 / 294
页数:10
相关论文
共 20 条
[1]  
[Anonymous], 2012, Practical numerical algorithms for chaotic systems
[2]   Identification of a non-linear electromagnetic system: An experimental study [J].
Chang, SC ;
Tung, PC .
JOURNAL OF SOUND AND VIBRATION, 1998, 214 (05) :853-871
[3]  
Chen G., 1998, CHAOS ORDER
[4]   CONTROLLING CHAOS USING TIME-DELAY COORDINATES [J].
DRESSLER, U ;
NITSCHE, G .
PHYSICAL REVIEW LETTERS, 1992, 68 (01) :1-4
[5]   CONTROLLING CARDIAC CHAOS [J].
GARFINKEL, A ;
SPANO, ML ;
DITTO, WL ;
WEISS, JN .
SCIENCE, 1992, 257 (5074) :1230-1235
[6]   FEEDBACK LINEARIZATION OF SAMPLED-DATA SYSTEMS [J].
GRIZZLE, JW ;
KOKOTOVIC, PV .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1988, 33 (09) :857-859
[7]   INTERMITTENT CHAOS AND LOW-FREQUENCY NOISE IN THE DRIVEN DAMPED PENDULUM [J].
GWINN, EG ;
WESTERVELT, RM .
PHYSICAL REVIEW LETTERS, 1985, 54 (15) :1613-1616
[8]  
Isidori A, 1995, NONLINEAR CONTROL SYSTEMS DESIGN 1995, VOLS 1 AND 2, P87
[9]  
Jayaraman G, 1995, PROCEEDINGS OF THE 34TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4, P619, DOI 10.1109/CDC.1995.478981
[10]  
JOHNANSSON R, 1993, SYSTEM MODELING IDEN