RPD3 and ROM2 are required for multidrug resistance in Saccharomyces cerevisiae

被引:17
作者
Borecka-Melkusova, Silvia [1 ]
Kozovska, Zuzana [1 ]
Hikkel, Imrich [1 ]
Dzugasova, Vladimira [1 ]
Subik, Julius [1 ]
机构
[1] Comenius Univ, Dept Microbiol & Virol, Fac Nat Sci, Bratislava 84215, Slovakia
关键词
multidrug resistance; PDR3; PDR5; ROM2; RPD3; transcription;
D O I
10.1111/j.1567-1364.2007.00352.x
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The PDR5 gene encodes the major multidrug resistance efflux pump in Saccharomyces cerevisiae. In drug-resistant cells, the hyperactive Pdr1p or Pdr3p transcriptional activators are responsible for the PDR5 upregulation. In this work, it is shown that the RPD3 gene encoding the histone deacetylase that functions as a transcriptional corepressor at many promoters and the ROM2 gene coding for the GDP/GTP exchange protein for Rho1p and Rho2p participating in signal transduction pathways are required for PDR5 transcription under cycloheximide-induced and noninduced conditions. Transposon insertion mutations in ROM2, RPD3 and some other genes encoding specific subunits of the large Rpd3L protein complex resulted in enhanced susceptibility of mutant cells to antifungals. In the rpd3 Delta and rom2 Delta mutants, the level of PDR5 mRNA and the rate of rhodamine 6G efflux were reduced. Unlike rpd3 Delta, in rom2 Delta mutant cells the drug hypersensitivity and the defect in PDR5 expression were suppressed by PDR1 or PDR3 overexpressed from heterologous promoters and by the hyperactive pdr3-9 mutant allele. The results indicate that Rpd3p histone deacetylase participating in chromatin remodeling and Rom2p participating in the cell integrity pathway are involved in the control of PDR5 expression and modulation of multidrug resistance in yeast.
引用
收藏
页码:414 / 424
页数:11
相关论文
共 77 条
[1]   Stt4 PI 4-kinase localizes to the plasma membrane and functions in the Pkc1-mediated MAP kinase cascade [J].
Audhya, A ;
Emr, SD .
DEVELOPMENTAL CELL, 2002, 2 (05) :593-605
[2]  
Ausubel FM, 1989, Current protocol in Molecular Biology
[3]  
BALZI E, 1987, J BIOL CHEM, V262, P16871
[4]   MULTIPLE OR PLEIOTROPIC DRUG-RESISTANCE IN YEAST [J].
BALZI, E ;
GOFFEAU, A .
BIOCHIMICA ET BIOPHYSICA ACTA, 1991, 1073 (02) :241-252
[5]   Genomewide studies of histone deacetylase function in yeast [J].
Bernstein, BE ;
Tong, JK ;
Schreiber, SL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (25) :13708-13713
[6]   Cell wall integrity modulates RHO1 activity via the exchange factor ROM2 [J].
Bickle, M ;
Delley, PA ;
Schmidt, A ;
Hall, MN .
EMBO JOURNAL, 1998, 17 (08) :2235-2245
[7]  
Brôco N, 1999, YEAST, V15, P1595
[8]   LARGE-SCALE ANALYSIS OF GENE-EXPRESSION, PROTEIN LOCALIZATION, AND GENE DISRUPTION SACCHAROMYCES-CEREVISIAE [J].
BURNS, N ;
GRIMWADE, B ;
ROSSMACDONALD, PB ;
CHOI, EY ;
FINBERG, K ;
ROEDER, GS ;
SNYDER, M .
GENES & DEVELOPMENT, 1994, 8 (09) :1087-1105
[9]   Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription [J].
Carrozza, MJ ;
Li, B ;
Florens, L ;
Suganuma, T ;
Swanson, SK ;
Lee, KK ;
Shia, WJ ;
Anderson, S ;
Yates, J ;
Washburn, MP ;
Workman, JL .
CELL, 2005, 123 (04) :581-592
[10]   Molecular and phenotypic characterization of yeast PDR1 mutants that show hyperactive transcription of various ABC multidrug transporter genes [J].
Carvajal, E ;
vandenHazel, HB ;
CybularzKolaczkowska, A ;
Balzi, E ;
Goffeau, A .
MOLECULAR AND GENERAL GENETICS, 1997, 256 (04) :406-415