Ammonium utilization in Bacillus subtilis:: transport and regulatory functions of NrgA and NrgB

被引:85
作者
Detsch, C [1 ]
Stülke, J [1 ]
机构
[1] Univ Erlangen Nurnberg, Lehrstuhl Mikrobiol, Inst Mikrobiol Biochem & Genet, D-91058 Erlangen, Germany
来源
MICROBIOLOGY-SGM | 2003年 / 149卷
关键词
D O I
10.1099/mic.0.26512-0
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Bacillus subtilis uses glutamine as the best source of nitrogen. In the absence of glutamine, alternative nitrogen sources such as ammonium can be used. Ammonium utilization involves the uptake of the gas or the ammonium ion, the synthesis of glutamine by the glutamine synthetase and the recycling of the glutamate by the glutamate synthase. In this work, ammonium transport in B. subtilis was studied. At high ammonium concentrations, a large fraction of the ammonium is present as ammonia, which may enter the cell via diffusion. In contrast, the ammonium transporter NrgA is required for ammonium utilization at low concentrations or at low pH values when the equilibrium between uncharged ammonia and the ammonium ion is shifted towards ammonium. Moreover, a functional NrgA is essential for the transport of the ammonium analogue methylammonium. NrgA is encoded in the nrgAB operon. The product of the second gene, NrgB, is a member of the PII family of regulatory proteins. In contrast to PII proteins from other organisms, there is no indication for a covalent modification of NrgB in response to the nitrogen supply of the cell. It is demonstrated here that NrgB is localized at the membrane, most likely in association with the ammonium transporter NrgA. The presence of a functional NrgB is required for full-level expression of the nrgAB operon in response to nitrogen limitation, suggesting that NrgB might relay the information on ammonium availability to downstream regulatory factors and thus fine-tune their activity.
引用
收藏
页码:3289 / 3297
页数:9
相关论文
共 41 条
[1]   PII signal transduction proteins, pivotal players in microbial nitrogen control [J].
Arcondéguy, T ;
Jack, R ;
Merrick, M .
MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, 2001, 65 (01) :80-+
[2]   Characterization of the GlnK protein of Escherichia coli [J].
Atkinson, MR ;
Ninfa, AJ .
MOLECULAR MICROBIOLOGY, 1999, 32 (02) :301-313
[3]   IDENTIFICATION OF GENES AND GENE-PRODUCTS WHOSE EXPRESSION IS ACTIVATED DURING NITROGEN-LIMITED GROWTH IN BACILLUS-SUBTILIS [J].
ATKINSON, MR ;
FISHER, SH .
JOURNAL OF BACTERIOLOGY, 1991, 173 (01) :23-27
[4]  
Belitsky B.R., 2002, BACILLUS SUBTILIS IT, P203
[5]   Role of TnrA in nitrogen source-dependent repression of Bacillus subtilis glutamate synthase gene expression [J].
Belitsky, BR ;
Wray, LV ;
Fisher, SH ;
Bohannon, DE ;
Sonenshein, AL .
JOURNAL OF BACTERIOLOGY, 2000, 182 (21) :5939-5947
[6]  
Belitsky BR, 1998, J BACTERIOL, V180, P6298
[7]   Transcriptional profiling of gene expression in response to glucose in Bacillus subtilis:: regulation of the central metabolic pathways [J].
Blencke, HM ;
Homuth, G ;
Ludwig, H ;
Mäder, U ;
Hecker, M ;
Stülke, J .
METABOLIC ENGINEERING, 2003, 5 (02) :133-149
[8]   POSITIVE REGULATION OF GLUTAMATE BIOSYNTHESIS IN BACILLUS-SUBTILIS [J].
BOHANNON, DE ;
SONENSHEIN, AL .
JOURNAL OF BACTERIOLOGY, 1989, 171 (09) :4718-4727
[9]   Membrane sequestration of the signal transduction protein GlnK by the ammonium transporter AmtB [J].
Coutts, G ;
Thomas, G ;
Blakey, D ;
Merrick, M .
EMBO JOURNAL, 2002, 21 (04) :536-545
[10]  
Faires Niki, 1999, Journal of Molecular Microbiology and Biotechnology, V1, P141