An Ustilago maydis gene involved in H2O2 detoxification is required for virulence

被引:206
作者
Molina, Lazaro [1 ]
Kahmann, Regine [1 ]
机构
[1] Max Planck Inst Terr Microbiol, D-35043 Marburg, Germany
关键词
D O I
10.1105/tpc.107.052332
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The fungus Ustilago maydis is a biotrophic pathogen of maize ( Zea mays). In its genome we have identified an ortholog of YAP1 ( for Yeast AP-1-like) from Saccharomyces cerevisae that regulates the oxidative stress response in this organism. yap1 mutants of U. maydis displayed higher sensitivity to H2O2 than wild-type cells, and their virulence was significantly reduced. U. maydis yap1 could partially complement the H2O2 sensitivity of a yap1 deletion mutant of S. cerevisiae, and a Yap1-green fluorescent protein fusion protein showed nuclear localization after H2O2 treatment, suggesting that Yap1 in U. maydis functions as a redox sensor. Mutations in two Cys residues prevented accumulation in the nucleus, and the respective mutant strains showed the same virulence phenotype as Delta yap1 mutants. Diamino benzidine staining revealed an accumulation of H2O2 around yap1 mutant hyphae, which was absent in the wild type. Inhibition of the plant NADPH oxidase prevented this accumulation and restored virulence. During the infection, Yap1 showed nuclear localization after penetration up to 2 to 3 d after infection. Through array analysis, a large set of Yap1-regulated genes were identified and these included two peroxidase genes. Deletion mutants of these genes were attenuated in virulence. These results suggest that U. maydis is using its Yap1-controlled H2O2 detoxification system for coping with early plant defense responses.
引用
收藏
页码:2293 / 2309
页数:17
相关论文
共 66 条
[1]   Reactive oxygen species and development in microbial eukaryotes [J].
Aguirre, J ;
Ríos-Momberg, M ;
Hewitt, D ;
Hansberg, W .
TRENDS IN MICROBIOLOGY, 2005, 13 (03) :111-118
[2]   The bZip transcription factor Cap1p is involved in multidrug resistance and oxidative stress response in Candida albicans [J].
Alarco, AM ;
Raymond, M .
JOURNAL OF BACTERIOLOGY, 1999, 181 (03) :700-708
[3]  
[Anonymous], 1989, Molecular Cloning
[4]   Reactive oxygen species: Metabolism, oxidative stress, and signal transduction [J].
Apel, K ;
Hirt, H .
ANNUAL REVIEW OF PLANT BIOLOGY, 2004, 55 :373-399
[5]   RAPID STIMULATION OF AN OXIDATIVE BURST DURING ELICITATION OF CULTURED PLANT-CELLS - ROLE IN DEFENSE AND SIGNAL TRANSDUCTION [J].
APOSTOL, I ;
HEINSTEIN, PF ;
LOW, PS .
PLANT PHYSIOLOGY, 1989, 90 (01) :109-116
[6]   The water-water cycle in chloroplasts: Scavenging of active oxygens and dissipation of excess photons [J].
Asada, K .
ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY, 1999, 50 :601-639
[7]  
Banuett F, 1996, DEVELOPMENT, V122, P2965
[8]   DIFFERENT A-ALLELES OF USTILAGO-MAYDIS ARE NECESSARY FOR MAINTENANCE OF FILAMENTOUS GROWTH BUT NOT FOR MEIOSIS [J].
BANUETT, F ;
HERSKOWITZ, I .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1989, 86 (15) :5878-5882
[9]   Dissecting defense-related and developmental transcriptional responses of maize during Ustilago maydis infection and subsequent tumor formation [J].
Basse, CW .
PLANT PHYSIOLOGY, 2005, 138 (03) :1774-1784
[10]   Characterization of a Ustilago maydis gene specifically induced during the biotrophic phase:: Evidence for negative as well as positive regulation [J].
Basse, CW ;
Stumpferl, S ;
Kahmann, R .
MOLECULAR AND CELLULAR BIOLOGY, 2000, 20 (01) :329-339