Tritrichomonas foetus is an amitochondrial parasite protist which lacks typical eukaryote organelles such as mitochondria and peroxisomes, but possesses the hydrogenosome, a double-membrane-bound organelle that produces ATP. The cell death of amitochondrial organisms is poorly studied. In the present work, the cytotoxic effects of hydrogen peroxide on T. foetus and its participation on cell death were analyzed. We took advantage of several microscopy techniques, including videomicroscopy, light microscopy immunocytochemistry for detection of caspase activation, and scanning and transmission electron microscopy. We report here that in T. foetus: (1) H2O2 leads to loss of motility and induces cell death, (2) the dying cells exhibit some characteristics similar to those found during the death of other organisms, and (3) a caspase-like protein seems to be activated during the death process. Thus, we propose that, although T. foetus does not present mitochondria nor any known pathways of cell death, it is likely that it bears mechanisms of cell demise. T. foetus exhibits morphological and physiological alterations in response to H2O2 treatment. The hydrogenosome, a unique organelle which is supposed to share a common ancestral origin with mitochondria and has an important role in oxidative responses in trichomonads, is a candidate for participating in this event.