Backbone dynamics of sequence specific recognition and binding by the yeast Pho4 bHLH domain probed by NMR

被引:25
作者
Cave, JW
Werner, K
Wemmer, DE [1 ]
机构
[1] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Calvin Lab, Berkeley, CA 94720 USA
关键词
helix-loop-helix protein; nonspecific binding; Pho4; protein dynamics; sequence-specific binding; spectral density mapping;
D O I
10.1110/ps.9.12.2354
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Backbone dynamics of the basic/helix-loop-helix domain of Pho4 from Saccharomyces cerevisiae have been probed by NMR techniques, in the absence of DNA. nonspecifically bound to DNA and bound to cognate DNA. Alpha proton chemical shift indices and nuclear Overhauser effect patterns were used to elucidate the secondary structure in these states. These secondary structures are compared to the co-crystal complex of Pho4 bound to a cognate DNA sequence (Shimizu T Toumoto A, Ihara K, Shimizu M, Kyogou Y, Ogawa N, Oshima Y, Hakoshima T, 1997, EMBO J 15: 4689-4697). The dynamic information provides insight into the nature of this DNA binding domain as it progresses from free in solution to a specifically bound DNA complex. Relative to the unbound form, we show that formation of either the nonspecific and cognate DNA bound complexes involves a large change in conformation and backbone dynamics of the basic region. The nonspecific and cognate complexes, however, have nearly identical secondary structure and backbone dynamics. We also present evidence for conformational flexibility at a highly conserved glutamate basic region residue. These results, art: discussed in relation to the mechanism of sequence specific recognition and binding.
引用
收藏
页码:2354 / 2365
页数:12
相关论文
共 53 条
[1]   MOLECULAR CHARACTERIZATION OF HELIX-LOOP-HELIX PEPTIDES [J].
ANTHONYCAHILL, SJ ;
BENFIELD, PA ;
FAIRMAN, R ;
WASSERMAN, ZR ;
BRENNER, SL ;
STAFFORD, WF ;
ALTENBACH, C ;
HUBBELL, WL ;
DEGRADO, WF .
SCIENCE, 1992, 255 (5047) :979-983
[2]   Cooperative Pho2-Pho4 interactions at the PHO5 promoter are critical for binding of Pho4 to UASp1 and for efficient transactivation by Pho4 at UASp2 [J].
Barbaric, S ;
Münsterkötter, M ;
Goding, C ;
Hörz, W .
MOLECULAR AND CELLULAR BIOLOGY, 1998, 18 (05) :2629-2639
[3]   The homeodomain protein Pho2 and the basic-helix-loop-helix protein Pho4 bind DNA cooperatively at the yeast PHO5 promoter [J].
Barbaric, S ;
Munsterkotter, M ;
Svaren, J ;
Horz, W .
NUCLEIC ACIDS RESEARCH, 1996, 24 (22) :4479-4486
[4]   BACKBONE DYNAMICS OF CALMODULIN STUDIED BY N-15 RELAXATION USING INVERSE DETECTED 2-DIMENSIONAL NMR-SPECTROSCOPY - THE CENTRAL HELIX IS FLEXIBLE [J].
BARBATO, G ;
IKURA, M ;
KAY, LE ;
PASTOR, RW ;
BAX, A .
BIOCHEMISTRY, 1992, 31 (23) :5269-5278
[5]   OPTIMIZED RECORDING OF HETERONUCLEAR MULTIDIMENSIONAL NMR-SPECTRA USING PULSED FIELD GRADIENTS [J].
BAX, A ;
POCHAPSKY, SS .
JOURNAL OF MAGNETIC RESONANCE, 1992, 99 (03) :638-643
[6]   Temperature dependence of intramolecular dynamics of the basic leucine zipper of GCN4: Implications for the entropy of association with DNA [J].
Bracken, C ;
Carr, PA ;
Cavanagh, J ;
Palmer, AG .
JOURNAL OF MOLECULAR BIOLOGY, 1999, 285 (05) :2133-2146
[7]   LONG-RANGE MOTIONAL RESTRICTIONS IN A MULTIDOMAIN ZINC-FINGER PROTEIN FROM ANISOTROPIC TUMBLING [J].
BRUSCHWEILER, R ;
LIAO, XB ;
WRIGHT, PE .
SCIENCE, 1995, 268 (5212) :886-889
[8]  
CAVANAGH J, 1992, J MAGN RESON, V96, P679
[10]   CRYSTAL-STRUCTURE OF TRANSCRIPTION FACTOR E47 - E-BOX RECOGNITION BY A BASIC REGION HELIX-LOOP-HELIX DIMER [J].
ELLENBERGER, T ;
FASS, D ;
ARNAUD, M ;
HARRISON, SC .
GENES & DEVELOPMENT, 1994, 8 (08) :970-980