Bayesian estimation of transcript levels using a general model of array measurement noise

被引:11
作者
Dror, RO
Murnick, JG
Rinaldi, NJ
Marinescu, VD
Rifkin, RM
Young, RA
机构
[1] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA
[2] MIT, Dept Biol, Cambridge, MA 02139 USA
[3] Whitehead Inst Biomed Res, Cambridge Ctr 9, Cambridge, MA 02142 USA
[4] MIT, Dept Brain & Cognit Sci, Cambridge, MA 02139 USA
[5] MIT, Dept Operat Res, Cambridge, MA 02139 USA
[6] MIT, Ctr Biol & Computat Learning, Cambridge, MA 02139 USA
关键词
gene arrays; microarrays; oligonucleotide arrays; noise model; Affymetrix; Bayesian estimation; statistical significance;
D O I
10.1089/10665270360688110
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Gene arrays demonstrate a promising ability to characterize expression levels across the entire genome but suffer from significant levels of measurement noise. We present a rigorous new approach to estimate transcript levels and ratios from one or more gene array experiments, given a model of measurement noise and available prior information. The Bayesian estimation of array measurements (BEAM) technique provides a principled method to identify changes in expression level, combine repeated measurements, or deal with negative expression level measurements. BEAM is more flexible than existing techniques, because it does not assume a specific functional form for noise and prior models. Instead, it relies on computational techniques that apply to a broad range of models. We use Affymetrix yeast chip data to illustrate the process of developing accurate noise and prior models from existing experimental data. The resulting noise model includes novel features such as heavy-tailed additive noise and a gene-specific bias term. We also verify that the resulting noise and prior models fit data from an Affymetrix human chip set.
引用
收藏
页码:433 / 452
页数:20
相关论文
共 24 条
  • [1] [Anonymous], 2001, NEW STAT ALG MON GEN
  • [2] Identifying differentially expressed genes in cDNA microarray experiments
    Baggerly, KA
    Coombes, KR
    Hess, KR
    Stivers, DN
    Abruzzo, LV
    Zhang, W
    [J]. JOURNAL OF COMPUTATIONAL BIOLOGY, 2001, 8 (06) : 639 - 659
  • [3] A Bayesian framework for the analysis of microarray expression data: regularized t-test and statistical inferences of gene changes
    Baldi, P
    Long, AD
    [J]. BIOINFORMATICS, 2001, 17 (06) : 509 - 519
  • [4] Exploring the new world of the genome with DNA microarrays
    Brown, PO
    Botstein, D
    [J]. NATURE GENETICS, 1999, 21 (Suppl 1) : 33 - 37
  • [5] Chen Y, 1997, J Biomed Opt, V2, P364, DOI 10.1117/12.281504
  • [6] Hartemink A J., 2001, SPIE BIOS 2001
  • [7] Dissecting the regulatory circuitry of a eukaryotic genome
    Holstege, FCP
    Jennings, EG
    Wyrick, JJ
    Lee, TI
    Hengartner, CJ
    Green, MR
    Golub, TR
    Lander, ES
    Young, RA
    [J]. CELL, 1998, 95 (05) : 717 - 728
  • [8] Functional discovery via a compendium of expression profiles
    Hughes, TR
    Marton, MJ
    Jones, AR
    Roberts, CJ
    Stoughton, R
    Armour, CD
    Bennett, HA
    Coffey, E
    Dai, HY
    He, YDD
    Kidd, MJ
    King, AM
    Meyer, MR
    Slade, D
    Lum, PY
    Stepaniants, SB
    Shoemaker, DD
    Gachotte, D
    Chakraburtty, K
    Simon, J
    Bard, M
    Friend, SH
    [J]. CELL, 2000, 102 (01) : 109 - 126
  • [9] Testing for differentially-expressed genes by maximum-likelihood analysis of microarray data
    Ideker, T
    Thorsson, V
    Siegel, AF
    Hood, LE
    [J]. JOURNAL OF COMPUTATIONAL BIOLOGY, 2000, 7 (06) : 805 - 817
  • [10] Global response of Saccharomyces cerevisiae to an alkylating agent
    Jelinsky, SA
    Samson, LD
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (04) : 1486 - 1491