Geometric reduction in optimal control theory with symmetries

被引:23
作者
Echeverría-Enríquez, A
Marín-Solano, J
Muñoz-Lecanda, MC
Román-Roy, N
机构
[1] Dept Matemat Aplicada IV, Barcelona 08034, Spain
[2] Univ Barcelona, Dept Matemat Econ Financera & Actuarial, Barcelona 08034, Spain
[3] Dept Matemat Aplicada IV, Barcelona 08034, Spain
关键词
symmetries; reduction; optimal control; presymplectic Hamiltonian systems;
D O I
10.1016/S0034-4877(03)90006-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A general study of symmetries in optimal control theory is given, starting from the presymplectic description of this kind of systems. Then, Noether's theorem, as well as the corresponding reduction procedure (based on the application of the Marsden-Weinstein theorem adapted to the presymplectic case) are stated both in the regular and singular cases, which are previously described.
引用
收藏
页码:89 / 113
页数:25
相关论文
共 35 条
[1]  
Abraham R., 1978, Foundations of mechanics
[2]  
[Anonymous], 1974, Reports on Mathematical Physics, V5, P121, DOI 10.1016/0034-4877(74)90021-4
[3]  
ARNOLD VI, 1988, DYNAMICAL SYSTEMS, V3
[4]  
Blankenstein G, 2000, LECT NOTES CONTR INF, V258, P185
[5]  
BLANKENSTEIN G, 2002, THESIS U TWENTE NETH
[6]  
Bloch AM, 1999, MATHEMATICAL CONTROL THEORY, P268
[7]  
BROCKET RW, 1970, SIAM J CONTROL OPTIM, V10, P265
[8]   LIE THEORY AND CONTROL-SYSTEMS DEFINED ON SPHERES [J].
BROCKETT, RW .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1973, 25 (02) :213-225
[9]   THEORY OF SINGULAR LAGRANGIANS [J].
CARINENA, JF .
FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 1990, 38 (09) :641-679
[10]  
CORTES J, 2001, GEN SYMMETRIES OPTIM