Chaos: Generating complexity from simplicity

被引:5
作者
Brown, R
Chua, LO
机构
[1] Appl Chaos Technol Corp, Arlington, VA 22203 USA
[2] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 95720 USA
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 1997年 / 7卷 / 11期
关键词
D O I
10.1142/S021812749700162X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The most commonly used mapping to illustrate the phenomenon of chaos is the map x --> 2x mod(1). This map is known as the 'unilateral shift' because, in the binary number system this map shifts all digits to the left by one decimal place, and truncates the integer. The second most commonly used paradigm of chaos is the Smale horseshoe whose complexity is essentially the bilateral shift obtained when we simply shift without truncation in some symbol system. Neither of these paradigms fully explains chaos since shifts cannot generate complex orbits from simple (rational) initial conditions. How chaos generates complexity from simplicity is an essential part that needs explanation. Providing this explanation is the objective of this paper.
引用
收藏
页码:2427 / 2436
页数:10
相关论文
共 5 条
[1]  
Alberts B., 2017, Molecular biology of the cell
[2]   Clarifying chaos: Examples and counterexamples [J].
Brown, R ;
Chua, LO .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1996, 6 (02) :219-249
[3]   From almost periodic to chaotic: The fundamental map [J].
Brown, R ;
Chua, LO .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1996, 6 (06) :1111-1125
[4]  
BROWN R, 1998, IN PRESS INT J BIFUR, V8
[5]  
FORD J, 1986, CHAOTIC DYNAMICS FRA, P1