The digital TV filter and nonlinear denoising

被引:335
作者
Chan, TF [1 ]
Osher, S
Shen, JH
机构
[1] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
[2] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
基金
美国国家科学基金会;
关键词
chromaticity; color images; data-dependent; de-noising; digital filters; graph; median filters; nonlinear; restoration; total variation (TV); edge-enhancement;
D O I
10.1109/83.902288
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Motivated by the classical TV (total variation) restoration model, we propose a new nonlinear filter-the digital TV filter for denoising and enhancing digital images, or more generally, data living on graphs. The digital TV filter is a data dependent lowpass filter, capable of denoising data without blurring jumps or edges. In iterations, it solves a global total variational (or L-1) optimization problem, which differs from most statistical filters. Applications are given in the denoising of one-dimensional (1-D) signals, two-dimensional (2-D) data with irregular structures, gray scale and color images, and nonflat image features such as chromaticity.
引用
收藏
页码:231 / 241
页数:11
相关论文
共 26 条
[1]   Faster minimization of linear wirelength for global placement [J].
Alpert, CJ ;
Chan, TF ;
Kahng, AB ;
Markov, IL ;
Mulet, P .
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 1998, 17 (01) :3-13
[2]  
*CALTECH CS, 1987, 525087 CALTECH CS DE
[3]   Image recovery via total variation minimization and related problems [J].
Chambolle, A ;
Lions, PL .
NUMERISCHE MATHEMATIK, 1997, 76 (02) :167-188
[4]  
CHAN T, 2001, IN PRESS SIAM J APPL
[5]   On the convergence of the lagged diffusivity fixed point method in total variation image restoration [J].
Chan, TF ;
Mulet, P .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1999, 36 (02) :354-367
[6]  
COIFMAN RR, 1999, IN PRESS APPL COMPUT
[7]  
COIFMAN RR, 1999, IN PRESS NEW TYPES T
[8]   Convergence of an iterative method for total variation denoising [J].
Dobson, DC ;
Vogel, CR .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1997, 34 (05) :1779-1791
[9]   DE-NOISING BY SOFT-THRESHOLDING [J].
DONOHO, DL .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1995, 41 (03) :613-627
[10]  
*ECE U MINN, 1999, TECH REP