Antimonial-induced increase in intracellular Ca2+ through non-selective cation channels in the host and the parasite is responsible for apoptosis of intracellular Leishmania donovani amastigotes

被引:144
作者
Sudhandiran, G [1 ]
Shaha, C [1 ]
机构
[1] Natl Inst Immunol, New Delhi 110067, India
关键词
D O I
10.1074/jbc.M301975200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The capability of the obligate intracellular parasites like Leishmania donovani to survive within the host cell parasitophorous vacuoles as nonmotile amastigotes determines disease pathogenesis, but the mechanism of elimination of the parasites from these vacuoles are not well understood. By using the anti-leishmanial drug potassium antimony tartrate, we demonstrate that, upon drug exposure, intracellular L. donovani amastigotes undergo apoptotic death characterized by nuclear DNA fragmentation and externalization of phosphatidylserine. Changes upstream of DNA fragmentation included generation of reactive oxygen species like superoxide, nitric oxide, and hydrogen peroxide that were primarily concentrated in the parasitophorous vacuoles. In the presence of antioxidants like N-acetylcysteine or Mn(III) tetrakis(4-benzoic acid) porphyrin chloride, an inhibitor of inducible nitric-oxide synthase, a diminution of reactive oxygen species generation and improvement of amastigote survival were observed, suggesting a close link between drug-induced oxidative stress and amastigote death. Changes downstream to reactive oxygen species increase involved elevation of intracellular Ca2+ concentrations in both the parasite and the host that was preventable by antioxidants. Flufenamic acid, a non-selective cation channel blocker, decreased the elevation of Ca2+ in both the cell types and reduced amastigote death, thus establishing a central role of Ca2+ in intracellular parasite clearance. This influx of Ca2+ was preceded by a fall in the amastigote mitochondrial membrane potential. Therefore, this study projects the importance of flufenamic acid-sensitive non-selective cation channels as important modulators of antimonial efficacy and lends credence to the suggestion that, within the host cell, apoptosis is the preferred mode of death for the parasites.
引用
收藏
页码:25120 / 25132
页数:13
相关论文
共 52 条
[1]   Role of nitric oxide in mediation of macrophage cytotoxicity and apoptosis [J].
Albina, JE ;
Reichner, JS .
CANCER AND METASTASIS REVIEWS, 1998, 17 (01) :39-53
[2]   On the origin, evolution, and nature of programmed cell death: a timeline of four billion years [J].
Ameisen, JC .
CELL DEATH AND DIFFERENTIATION, 2002, 9 (04) :367-393
[3]   A phagosome of one's own: a microbial guide to life in the macrophage [J].
Amer, AO ;
Swanson, MS .
CURRENT OPINION IN MICROBIOLOGY, 2002, 5 (01) :56-61
[4]   The biogenesis and properties of the parasitophorous vacuoles that harbour Leishmania in murine macrophages [J].
Antoine, JC ;
Prina, E ;
Lang, T ;
Courret, N .
TRENDS IN MICROBIOLOGY, 1998, 6 (10) :392-401
[5]   On the evolution of programmed cell death:: apoptosis of the unicellular eukaryote Leishmania major involves cysteine proteinase activation and mitochondrion permeabilization [J].
Arnoult, D ;
Akarid, K ;
Grodet, A ;
Petit, PX ;
Estaquier, J ;
Ameisen, JC .
CELL DEATH AND DIFFERENTIATION, 2002, 9 (01) :65-81
[6]   OXYGEN-DEPENDENT MICROBIAL KILLING BY PHAGOCYTES .2. [J].
BABIOR, BM .
NEW ENGLAND JOURNAL OF MEDICINE, 1978, 298 (13) :721-725
[7]   N-acetylcysteine inhibits in vivo nitric oxide production by inducible nitric oxide synthase [J].
Bergamini, S ;
Rota, C ;
Canali, R ;
Staffieri, M ;
Daneri, F ;
Bini, A ;
Giovannini, F ;
Tomasi, A ;
Iannone, A .
NITRIC OXIDE-BIOLOGY AND CHEMISTRY, 2001, 5 (04) :349-360
[8]   BIOCHEMICAL-MECHANISMS OF THE ANTILEISHMANIAL ACTIVITY OF SODIUM STIBOGLUCONATE [J].
BERMAN, JD ;
WADDELL, D ;
HANSON, BD .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 1985, 27 (06) :916-920
[9]  
Chang K. P., 1985, Leishmaniasis. (Human Parasitic Diseases Vol.1.), P213
[10]   MULTIPLICATION OF A HUMAN PARASITE (LEISHMANIA-DONOVANI) IN PHAGOLYSOSOMES OF HAMSTER MACROPHAGES INVITRO [J].
CHANG, KP ;
DWYER, DM .
SCIENCE, 1976, 193 (4254) :678-680