Preparation and characterization of new melt compounded copolyamide nanocomposites

被引:52
作者
Incarnato, L
Scarfato, P
Russo, GM
Di Maio, L
Iannelli, P
Acierno, D
机构
[1] Univ Salerno, Dept Chem & Food Engn, I-84084 Fisciano, SA, Italy
[2] Univ Naples Federico II, Dept Mat & Prod Engn, I-80125 Naples, Italy
关键词
nanocomposites; melt compounding; copolyamide;
D O I
10.1016/S0032-3861(03)00360-4
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
In this work new copolyamide-layered silicate nanocomposites were prepared by melt compounding using a commercial polyamide 6-based copolymer, with a partially aromatic structure, as thermoplastic matrix. This copolyamide, having a lower melting point and improved mechanical and barrier properties respect to the homopolymer, appears an interesting material for producing nanocomposite packaging films. Hybrids with different organoclay loadings were produced by a twin-screw extruder using different extrusion rates, in order to point out the effects of both processing conditions and hybrid composition on morphology (silicate dispersion and exfoliation, orientation, matrix crystallinity) of nanocomposites. All melt-intercalated samples were submitted to structural (TEM and XRD), thermal and dynamic mechanical measurements. The performed analyses have evidenced that all hybrids exhibit mixed intercalated/exfoliated morphology and that the extent of exfoliation increases with both clay amount and extrusion rate used. Moreover, it was pointed out that the silicate nano-scale dispersion significantly affects the crystalline morphology of copolyamide matrix, stabilizing the gamma-crystal phase, and the dynamic mechanical response of the hybrids, whose storage and loss moduli values result sensibly higher than those corresponding to the neat matrix. (C) 2003 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:4625 / 4634
页数:10
相关论文
共 37 条
[1]   Polymer-layered silicate nanocomposites: Preparation, properties and uses of a new class of materials [J].
Alexandre, Michael ;
Dubois, Philippe .
Materials Science and Engineering: R: Reports, 2000, 28 (1-2) :1-63
[2]   3D Hierarchical orientation in polymer-clay nanocomposite films [J].
Bafna, A ;
Beaucage, G ;
Mirabella, F ;
Mehta, S .
POLYMER, 2003, 44 (04) :1103-1115
[3]  
BURNSIDE SD, 1994, CHEM MATER, V6, P2216
[4]   Nylon 6 nanocomposites by melt compounding [J].
Cho, JW ;
Paul, DR .
POLYMER, 2001, 42 (03) :1083-1094
[5]   Effect of melt processing conditions on the extent of exfoliation in organoclay-based nanocomposites [J].
Dennis, HR ;
Hunter, DL ;
Chang, D ;
Kim, S ;
White, JL ;
Cho, JW ;
Paul, DR .
POLYMER, 2001, 42 (23) :9513-9522
[6]   Crystallization behavior of PA-6 clay nanocomposite hybrid [J].
Devaux, E ;
Bourbigot, S ;
El Achari, A .
JOURNAL OF APPLIED POLYMER SCIENCE, 2002, 86 (10) :2416-2423
[7]   Nylon 6 nanocomposites: the effect of matrix molecular weight [J].
Fornes, TD ;
Yoon, PJ ;
Keskkula, H ;
Paul, DR .
POLYMER, 2001, 42 (25) :9929-9940
[8]  
HOLMES M, 2000, PLAST ADD COMP, V7, P34
[9]   New developments in the melt rheology of nylons .1. Effect of moisture and molecular weight [J].
Khanna, YP ;
Han, PK ;
Day, ED .
POLYMER ENGINEERING AND SCIENCE, 1996, 36 (13) :1745-1754
[10]   FINE-STRUCTURE OF NYLON-6-CLAY HYBRID [J].
KOJIMA, Y ;
USUKI, A ;
KAWASUMI, M ;
OKADA, A ;
KURAUCHI, T ;
KAMIGAITO, O ;
KAJI, K .
JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 1994, 32 (04) :625-630