Aquaporins constitute a large and highly divergent protein family in maize

被引:514
作者
Chaumont, F
Barrieu, F
Wojcik, E
Chrispeels, MJ [1 ]
Jung, R
机构
[1] Univ Calif San Diego, Div Biol, La Jolla, CA 92093 USA
[2] Catholic Univ Louvain, B-1348 Louvain, Belgium
[3] Pioneer HiBred Int Inc, Johnston, IA 50131 USA
关键词
D O I
10.1104/pp.125.3.1206
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Aquaporins (AQPs) are an ancient family of channel proteins that transport water and neutral solutes through a Fore and are found in all eukaryotes and most prokaryotes. A comparison of the amino acid sequences and phylogenetic analysis of 31 full-length cDNAs of maize (Zen mays) AQPs shows that they comprise four different groups of highly divergent proteins. We have classified them as plasma membrane intinsic proteins (PIPs), tonoplast intrinsic proteins, Nod26-like intrinsic proteins, and small and basic intrinsic proteins. Amino acid sequence identities vary from 16% to 100%, but all sequences share structural motifs and conserved amino acids necessary to stabilize the two loops that form the aqueous pore. Most divergent are the mall and basic integral proteins in which the first of the two highly conserved Asn-Pro-Ala motifs of the pore is not conserved, but is represented by alanine-proline-threonine or alanine-proline-serine. We present a model of ZmPIP1-2 based on the three-dimensional structure of mammalian AQP1. Tabulation of the number of times that the AQP sequences are found in a collection of databases that comprises about 470,000 maize cDNAs indicates that a few of the maize AQPs are very highly expressed and many are not abundantly expressed. The phylogenetic analysis supports the interpretation that the divergence of PIPs through gene duplication occurred more recently than the divergence of the members of the ether three subfamilies. This study opens the way to analyze the function of the proteins in Xenopus laevis oocytes, determine the tissue specific expression of the genes, recover insertion mutants, and determine the in planta function.
引用
收藏
页码:1206 / 1215
页数:10
相关论文
共 35 条
[1]  
ALTSCHUL SF, 1990, J MOL BIOL, V215, P403, DOI 10.1006/jmbi.1990.9999
[2]   Aquaporin localization - how valid are the TIP and PIP labels? [J].
Barkla, BJ ;
Vera-Estrella, R ;
Pantoja, O ;
Kirch, HH ;
Bohnert, HJ .
TRENDS IN PLANT SCIENCE, 1999, 4 (03) :86-88
[3]   High expression of the tonoplast aquaporin ZmTIP1 in epidermal and conducting tissues of maize [J].
Barrieu, F ;
Chaumont, F ;
Chrispeels, MJ .
PLANT PHYSIOLOGY, 1998, 117 (04) :1153-1163
[4]   The Nicotiana tabacum plasma membrane aquaporin NtAQP1 is mercury-insensitive and permeable for glycerol [J].
Biela, A ;
Grote, K ;
Otto, B ;
Hoth, S ;
Hedrich, R ;
Kaldenhoff, R .
PLANT JOURNAL, 1999, 18 (05) :565-570
[5]   Plasma membrane intrinsic proteins from maize cluster in two sequence subgroups with differential aquaporin activity [J].
Chaumont, F ;
Barrieu, F ;
Jung, R ;
Chrispeels, MJ .
PLANT PHYSIOLOGY, 2000, 122 (04) :1025-1034
[6]   Characterization of a maize tonoplast aquaporin expressed in zones of cell division and elongation [J].
Chaumont, F ;
Barrieu, F ;
Herman, EM ;
Chrispeels, MJ .
PLANT PHYSIOLOGY, 1998, 117 (04) :1143-1152
[7]   Projection structure of a plant vacuole membrane aquaporin by electron cryo-crystallography [J].
Daniels, MJ ;
Chrispeels, MJ ;
Yeager, M .
JOURNAL OF MOLECULAR BIOLOGY, 1999, 294 (05) :1337-1349
[8]   Characterization of a new vacuolar membrane aquaporin sensitive to mercury at a unique site [J].
Daniels, MJ ;
Chaumont, F ;
Mirkov, TE ;
Chrispeels, MJ .
PLANT CELL, 1996, 8 (04) :587-599
[9]   Purification and functional reconstitution of soybean nodulin 26. An aquaporin with water and glycerol transport properties [J].
Dean, RM ;
Rivers, RL ;
Zeidel, ML ;
Roberts, DM .
BIOCHEMISTRY, 1999, 38 (01) :347-353
[10]   Base-calling of automated sequencer traces using phred.: I.: Accuracy assessment [J].
Ewing, B ;
Hillier, L ;
Wendl, MC ;
Green, P .
GENOME RESEARCH, 1998, 8 (03) :175-185