Impact of Two-Way Aerosol-Cloud Interaction and Changes in Aerosol Size Distribution on Simulated Aerosol-Induced Deep Convective Cloud Sensitivity

被引:30
作者
Ekman, Annica M. L. [1 ]
Engstrom, Anders
Soderberg, Anders
机构
[1] Stockholm Univ, Dept Meteorol, SE-10691 Stockholm, Sweden
关键词
3-DIMENSIONAL NUMERICAL-MODEL; NUCLEATION RATES; RESOLVING MODEL; MICROPHYSICS; PARAMETERIZATION; TRANSPORT; REDISTRIBUTION; CHEMISTRY; DYNAMICS; PHYSICS;
D O I
10.1175/2010JAS3651.1
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Recent cloud-resolving model studies of single (isolated) deep convective clouds have shown contradicting results regarding the response of the deep convection to changes in the aerosol concentration. In the present study, a cloud-resolving model including explicit aerosol physics and chemistry is used to examine how the complexity of the aerosol model, the size of the aerosols, and the aerosol activation parameterization influence the aerosol-induced deep convective cloud sensitivity. Six sensitivity series are conducted. A significant difference in the aerosol-induced deep convective cloud sensitivity is found when using different complexities of the aerosol model and different aerosol activation parameterizations. In particular, graupel impaction scavenging of aerosols appears to be a crucial process because it efficiently may limit the number of cloud condensation nuclei (CCN) at a critical stage of cloud development and thereby dampen the convection. For the simulated case, a 100% increase in aerosol concentration results in a difference in average updraft between the various sensitivity series that is as large as the average updraft increase itself. The change in graupel and rain formation also differs significantly. The sign of the change in precipitation is not always directly proportional to the change in updraft velocity and several of the sensitivity series display a decrease of the rain amount with increasing updraft velocity. This result illustrates the need to account for changes in evaporation processes and subsequent cooling when assessing aerosol effects on deep convective strength. The model simulations also show that an increased number of aerosols in the Aitken mode (here defined by 23 <= d <= 100.0 nm) results in a larger impact on the convective strength compared to an increased number of aerosols in the accumulation mode (here defined by 100 <= d <= 900.0 nm). When accumulation mode aerosols are activated and grow at the beginning of the cloud cycle, the supersaturation near the cloud base is lowered, which to some extent limits further aerosol activation. The simulations indicate a need to better understand and represent the two-way interaction between aerosols and clouds when studying aerosol-induced deep convective cloud sensitivity.
引用
收藏
页码:685 / 698
页数:14
相关论文
共 41 条
[1]   AEROSOLS, CLOUD MICROPHYSICS, AND FRACTIONAL CLOUDINESS [J].
ALBRECHT, BA .
SCIENCE, 1989, 245 (4923) :1227-1230
[2]  
[Anonymous], 1998, Microphysics of clouds and precipitation
[3]   Cloud-scale model intercomparison of chemical constituent transport in deep convection [J].
Barth, M. C. ;
Kim, S.-W. ;
Wang, C. ;
Pickering, K. E. ;
Ott, L. E. ;
Stenchikov, G. ;
Leriche, M. ;
Cautenet, S. ;
Pinty, J.-P. ;
Barthe, Ch. ;
Mari, C. ;
Helsdon, J. H. ;
Farley, R. D. ;
Fridlind, A. M. ;
Ackerman, A. S. ;
Spiridonov, V. ;
Telenta, B. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2007, 7 (18) :4709-4731
[4]  
BERRY EX, 1967, J ATMOS SCI, V24, P688, DOI 10.1175/1520-0469(1967)024<0688:CDGBC>2.0.CO
[5]  
2
[6]   Urban growth and aerosol effects on convection over Houston Part I: The August 2000 case [J].
Carrio, G. G. ;
Cotton, W. R. ;
Cheng, W. Y. Y. .
ATMOSPHERIC RESEARCH, 2010, 96 (04) :560-574
[7]  
COTTON WR, 1986, J CLIM APPL METEOROL, V25, P1658, DOI 10.1175/1520-0450(1986)025<1658:NSOTEO>2.0.CO
[8]  
2
[9]   The effect of aerosol composition and concentration on the development and anvil properties of a continental deep convective cloud [J].
Ekman, A. M. L. ;
Engstroem, A. ;
Wang, C. .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2007, 133 (627) :1439-1452
[10]   Explicit simulation of aerosol physics in a cloud-resolving model:: Aerosol transport and processing in the free troposphere [J].
Ekman, AML ;
Wang, C ;
Ström, J ;
Krejci, R .
JOURNAL OF THE ATMOSPHERIC SCIENCES, 2006, 63 (02) :682-696