A strong approximation theorem for stochastic recursive algorithms

被引:14
作者
Borkar, VS [1 ]
Mitter, SK
机构
[1] Indian Inst Sci, Dept Comp Sci & Automat, Bangalore 560012, Karnataka, India
[2] MIT, Informat & Decis Syst Lab, Cambridge, MA 02139 USA
关键词
stochastic algorithms; approximation of stochastic differential equations; constant stepsize algorithms; asymptotic behavior;
D O I
10.1023/A:1022630321574
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
The constant stepsize analog of Gelfand-Mitter type discrete-time stochastic recursive algorithms is shown to track an associated stochastic differential equation in the strong sense, i.e., with respect to an appropriate divergence measure.
引用
收藏
页码:499 / 513
页数:15
相关论文
共 17 条
[1]   BOUNDS FOR FUNDAMENTAL SOLUTION OF A PARABOLIC EQUATION [J].
ARONSON, DG .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1967, 73 (06) :890-&
[2]  
Bhattacharya R. N., 1981, Stochastic Nonlinear Systems in Physics, Chemistry, and Biology. Proceedings of the Workshop, P86
[3]  
Borkar V. S., 1986, Stochastics, V18, P17, DOI 10.1080/17442508608833398
[4]   ERGODIC CONTROL OF MULTIDIMENSIONAL DIFFUSIONS .2. ADAPTIVE-CONTROL [J].
BORKAR, VS ;
GHOSH, MK .
APPLIED MATHEMATICS AND OPTIMIZATION, 1990, 21 (02) :191-220
[5]  
BORKAR VS, 1996, PROBABILITY THEORY A
[6]  
Cover T. M., 2005, ELEM INF THEORY, DOI 10.1002/047174882X
[7]  
Deuschel J. D., 1989, LARGE DEVIATIONS
[8]   METROPOLIS-TYPE ANNEALING ALGORITHMS FOR GLOBAL OPTIMIZATION IN RD [J].
GELFAND, SB ;
MITTER, SK .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1993, 31 (01) :111-131
[9]   RECURSIVE STOCHASTIC ALGORITHMS FOR GLOBAL OPTIMIZATION IN RD [J].
GELFAND, SB ;
MITTER, SK .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1991, 29 (05) :999-1018
[10]  
GELFAND SB, 1996, COMMUNICATION