Oxidative stress disrupts insulin-induced cellular redistribution of insulin receptor substrate-1 and phosphatidylinositol 3-kinase in 3T3-L1 adipocytes - A putative cellular mechanism for impaired protein kinase B activation and GLUT4 translocation

被引:245
作者
Tirosh, A
Potashnik, R
Bashan, N [1 ]
Rudich, A
机构
[1] Ben Gurion Univ Negev, Fac Hlth Sci, Dept Clin Biochem, IL-84103 Beer Sheva, Israel
[2] Soroka Med Ctr, IL-84101 Beer Sheva, Israel
关键词
D O I
10.1074/jbc.274.15.10595
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In a recent study we have demonstrated that 3T3-L1 adipocytes exposed to low micromolar H2O2 concentrations display impaired insulin stimulated GLUT4 translocation from internal membrane pools to the plasma membrane (Rudich, A., Tirosh, A., Potashnik, R., Hemi, R., Kannety, H., and Bashan, N, (1998) Diabetes 47, 1562-1569), In this study we further characterize the cellular mechanisms responsible for this observation, Two-hour exposure to similar to 25 mu M H2O2 (generated by adding glucose oxidase to the medium) resulted in disruption of the normal insulin stimulated insulin receptor substrate (IRS)-1 and phosphatidylinositol (PI) 3-kinase cellular redistribution between the cytosol and an internal membrane pool (low density microsomal fraction (LDM)). This was associated with reduced insulin-stimulated IRS-1 and p85 associated PI 3-kinase activities in the LDM (84 and 96% inhibition, respectively). The effect of this finding on the downstream insulin signal was demonstrated by a 90% reduction in insulin stimulated protein kinase B (PKB) serine 473 phosphorylation and impaired activation of PKB alpha and PKB gamma. Both control and oxidized cells exposed to heat shock displayed a wortmannin insensitive PKB serine phosphorylation and activity. These data suggest that activation of PKB and GLUT4 translocation are insulin signaling events dependent upon a normal insulin induced cellular compartmentalization of PI 3-kinase and IRS-1, which is oxidative stress-sensitive. These findings represent a novel cellular mechanism for the induction of insulin resistance in response to changes in the extracellular environment.
引用
收藏
页码:10595 / 10602
页数:8
相关论文
共 67 条
  • [1] Mechanism of activation and function of protein kinase B
    Alessi, DR
    Cohen, P
    [J]. CURRENT OPINION IN GENETICS & DEVELOPMENT, 1998, 8 (01) : 55 - 62
  • [2] A RETROVIRAL ONCOGENE, AKT, ENCODING A SERINE-THREONINE KINASE CONTAINING AN SH2-LIKE REGION
    BELLACOSA, A
    TESTA, JR
    STAAL, SP
    TSICHLIS, PN
    [J]. SCIENCE, 1991, 254 (5029) : 274 - 277
  • [3] BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
  • [4] PROTEIN-KINASE-B (C-AKT) IN PHOSPHATIDYLINOSITOL-3-OH INASE SIGNAL-TRANSDUCTION
    BURGERING, BMT
    COFFER, PJ
    [J]. NATURE, 1995, 376 (6541) : 599 - 602
  • [5] Insulin increases the association of akt-2 with Glut4-containing vesicles
    Calera, MR
    Martinez, C
    Liu, HZ
    El Jack, AK
    Birnbaum, MJ
    Pilch, PF
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (13) : 7201 - 7204
  • [6] Caro Jose F., 1996, P519
  • [7] Osmotic shock stimulates GLUT4 translocation in 3T3L1 adipocytes by a novel tyrosine kinase pathways
    Chen, D
    Elmendorf, JS
    Olson, AL
    Li, X
    Earp, S
    Pessin, JE
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (43) : 27401 - 27410
  • [8] CLANCY BM, 1990, J BIOL CHEM, V265, P12434
  • [9] Intracellular localization of phosphatidylinositide 3-kinase and insulin receptor substrate-1 in adipocytes: Potential involvement of a membrane skeleton
    Clark, SF
    Martin, S
    Carozzi, AJ
    Hill, MM
    James, DE
    [J]. JOURNAL OF CELL BIOLOGY, 1998, 140 (05) : 1211 - 1225
  • [10] MOLECULAR-CLONING AND CHARACTERIZATION OF A NOVEL PUTATIVE PROTEIN-SERINE KINASE RELATED TO THE CAMP-DEPENDENT AND PROTEIN-KINASE-C FAMILIES
    COFFER, PJ
    WOODGETT, JR
    [J]. EUROPEAN JOURNAL OF BIOCHEMISTRY, 1991, 201 (02): : 475 - 481