Zones of chaotic behaviour in the parametrically excited pendulum

被引:79
作者
Bishop, SR
Clifford, MJ
机构
关键词
D O I
10.1006/jsvi.1996.0011
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
引用
收藏
页码:142 / 147
页数:6
相关论文
共 8 条
[1]   PERIODIC OSCILLATIONS AND ATTRACTING BASINS FOR A PARAMETRICALLY EXCITED PENDULUM [J].
CAPECCHI, D ;
BISHOP, SR .
DYNAMICS AND STABILITY OF SYSTEMS, 1994, 9 (02) :123-143
[2]   APPROXIMATING THE ESCAPE ZONE FOR THE PARAMETRICALLY EXCITED PENDULUM [J].
CLIFFORD, MJ ;
BISHOP, SR .
JOURNAL OF SOUND AND VIBRATION, 1994, 172 (04) :572-576
[3]  
CLIFFORD MJ, IN PRESS INT J BIFUR
[4]   APPROACHING NONLINEAR DYNAMICS BY STUDYING THE MOTION OF A PENDULUM .1. OBSERVING TRAJECTORIES IN STATE-SPACE [J].
HENG, H ;
DOERNER, R ;
HUBINGER, B ;
MARTIENSSEN, W .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1994, 4 (04) :751-760
[5]  
LEVEN RW, 1985, PHYSICA D, V16, P371, DOI 10.1016/0167-2789(85)90015-6
[6]   CONSTRUCTION AND QUANTITATIVE CHARACTERIZATION OF A CHAOTIC SADDLE FROM A PENDULUM EXPERIMENT [J].
LEVEN, RW ;
SELENT, M .
CHAOS SOLITONS & FRACTALS, 1994, 4 (12) :2217-2222
[7]   FRACTAL DIMENSIONS AND F(ALPHA SPECTRUM OF CHAOTIC SETS NEAR CRISES [J].
LEVEN, RW ;
SELENT, M ;
UHRLANDT, D .
CHAOS SOLITONS & FRACTALS, 1994, 4 (05) :661-676
[8]   BIFURCATIONS PHENOMENA IN A NONLINEAR OSCILLATOR - APPROXIMATE ANALYTICAL STUDIES VERSUS COMPUTER-SIMULATION RESULTS [J].
SZEMPLINSKASTUPNICKA, W ;
RUDOWSKI, J .
PHYSICA D, 1993, 66 (3-4) :368-380