Toward a deterministic model of planetary formation. III. Mass distribution of short-period planets around stars of various masses

被引:387
作者
Ida, S [1 ]
Lin, DNC
机构
[1] Tokyo Inst Technol, Meguro Ku, Tokyo 1528551, Japan
[2] Univ Calif Santa Cruz, Lick Observ, UCO, Santa Cruz, CA 95064 USA
关键词
planetary systems : formation; solar system : formation; stars : statistics;
D O I
10.1086/429953
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The origin of a recently discovered close-in Neptune-mass planet around GJ 436 poses a challenge to the current theories of planet formation. On the basis of the sequential accretion hypothesis and the standard theory of gap formation and orbital migration, we show that around M dwarf stars, close-in Neptune-mass ice giant planets may be relatively common, while close-in Jupiter-mass gas giant planets are relatively rare. The mass distribution of close-in planets generally has two peaks at about Neptune mass and Jupiter mass. The lower mass peak takes the maximum frequency for M dwarfs. Around more massive solar-type stars (G dwarfs), the higher mass peak is much more pronounced. Planets around G dwarfs undergo orbital migration after fully accreting gas, while those around M dwarfs tend to migrate before starting rapid gas accretion. Close-in Neptune-mass planets may also exist around G dwarfs, although they tend to be mostly composed of silicates and iron cores and their frequency is expected to be much smaller than that of Neptune-mass planets around M dwarfs and that of gas giants around G dwarfs. We also show that the conditions for planets' migration due to their tidal interaction with the disk and the stellar mass dependence in the disk mass distribution can be calibrated by the mass distribution of short-period planets around host stars with various masses.
引用
收藏
页码:1045 / 1060
页数:16
相关论文
共 71 条
[1]   EVOLUTION OF PLANETESIMALS .2. NUMERICAL SIMULATIONS [J].
AARSETH, SJ ;
LIN, DNC ;
PALMER, PL .
ASTROPHYSICAL JOURNAL, 1993, 403 (01) :351-376
[2]   Non-linear dynamics of the corotation torque [J].
Balmforth, NJ ;
Korycansky, DG .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2001, 326 (03) :833-851
[3]   Circumstellar disks and the search for neighbouring planetary systems [J].
Beckwith, SVW ;
Sargent, AI .
NATURE, 1996, 383 (6596) :139-144
[4]   Models of the in situ formation of detected extrasolar giant planets [J].
Bodenheimer, P ;
Hubickyj, O ;
Lissauer, JJ .
ICARUS, 2000, 143 (01) :2-14
[5]   CALCULATIONS OF THE ACCRETION AND EVOLUTION OF GIANT PLANETS - THE EFFECTS OF SOLID CORES [J].
BODENHEIMER, P ;
POLLACK, JB .
ICARUS, 1986, 67 (03) :391-408
[6]   Rapid formation of ice giant planets [J].
Boss, AP ;
Wetherill, GW ;
Haghighipour, N .
ICARUS, 2002, 156 (01) :291-295
[7]   Formation of planetary-mass objects by protostellar collapse and fragmentation [J].
Boss, AP .
ASTROPHYSICAL JOURNAL, 2001, 551 (02) :L167-L170
[8]   Tidally induced gap formation in protostellar disks: Gap clearing and suppression of protoplanetary growth [J].
Bryden, G ;
Chen, XM ;
Lin, DNC ;
Nelson, RP ;
Papaloizou, JCB .
ASTROPHYSICAL JOURNAL, 1999, 514 (01) :344-367
[9]   A Neptune-mass planet orbiting the nearby M dwarf GJ 436 [J].
Butler, RP ;
Vogt, SS ;
Marcy, GW ;
Fischer, DA ;
Wright, JT ;
Henry, GW ;
Laughlin, G ;
Lissauer, JJ .
ASTROPHYSICAL JOURNAL, 2004, 617 (01) :580-588
[10]   Accretion disks around young objects. III. Grain growth [J].
D'Alessio, P ;
Calvet, N ;
Hartmann, L .
ASTROPHYSICAL JOURNAL, 2001, 553 (01) :321-334