Predicting core and edge transport barriers in tokamaks using the GLF23 drift-wave transport model

被引:67
作者
Kinsey, JE [1 ]
Staebler, GM
Waltz, RE
机构
[1] Lehigh Univ, Bethlehem, PA 18015 USA
[2] Gen Atom Co, San Diego, CA 92186 USA
关键词
D O I
10.1063/1.1886826
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The density and temperature profiles are predicted in core and edge transport barriers in the DIII-D tokamak [J. L. Luxon and L. G. Davis, Fusion Technol. 8, 441 (1985)] using the GLF23 drift-wave model. The GLF23 model has been retuned to yield a better fit to the linear gyrokinetic growth rates for reversed magnetic shear and H-mode pedestal parameters. The turbulent saturation levels are determined using nonlinear gyrokinetic simulations. Using a large profile database, it is found that the retuned and original GLF23 models yield comparable results for discharges with monotonic safety factor profiles and no discernable internal transport barriers (ITBs). Examples of using retuned GLF23 model to predict the temperature profiles in simulations of several DIII-D strongly reversed magnetic shear ITB discharges are provided. Particle transport simulations show that the model is successful in predicting the density profile in discharges without ITBs but that some additional background particle diffusivity is needed in order to reproduce the measured density profiles within the barrier region of ITB plasmas where the ion temperature gradient and trapped electron mode transport have been quenched by rotational shear stabilization. (c) 2005 American Institute of Physics.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 52 条
[1]   Theory-based modeling of particle transport in ASDEX Upgrade H-mode plasmas, density peaking, anomalous pinch and collisionality [J].
Angioni, C ;
Peeters, AG ;
Pereverzev, GV ;
Ryter, F ;
Tardini, G .
PHYSICS OF PLASMAS, 2003, 10 (08) :3225-3239
[2]   Predicting temperature and density profiles in tokamaks [J].
Bateman, G ;
Kritz, AH ;
Kinsey, JE ;
Redd, AJ ;
Weiland, J .
PHYSICS OF PLASMAS, 1998, 5 (05) :1793-1799
[3]   THEORY-BASED TRANSPORT MODELING OF TFTR [J].
BATEMAN, G ;
WEILAND, J ;
NORDMAN, H ;
KINSEY, J ;
SINGER, C .
PHYSICA SCRIPTA, 1995, 51 (05) :597-601
[4]   The International Multi-Tokamak Profile Database [J].
Boucher, D ;
Connor, JW ;
Houlberg, WA ;
Turner, MF ;
Bracco, G ;
Chudnovskiy, A ;
Cordey, JG ;
Greenwald, MJ ;
Hoang, GT ;
Hogeweij, GMD ;
Kaye, SM ;
Kinsey, JE ;
Mikkelsen, DR ;
Ongena, J ;
Schissel, DR ;
Shirai, H ;
Stober, J ;
Subberfield, PM ;
Waltz, RE ;
Weiland, J .
NUCLEAR FUSION, 2000, 40 (12) :1955-1981
[5]   Anomalous transport scaling in the DIII-D tokamak matched by supercomputer simulation [J].
Candy, J ;
Waltz, RE .
PHYSICAL REVIEW LETTERS, 2003, 91 (04)
[6]   EFFECT OF IMPURITY PARTICLES ON THE FINITE-ASPECT RATIO NEOCLASSICAL ION THERMAL-CONDUCTIVITY IN A TOKAMAK [J].
CHANG, CS ;
HINTON, FL .
PHYSICS OF FLUIDS, 1986, 29 (10) :3314-3316
[7]   THE SCALING OF TRANSPORT WITH NORMALIZED LARMOR RADIUS IN JET [J].
CHRISTIANSEN, JP ;
STUBBERFIELD, PM ;
CORDEY, JG ;
GORMEZANO, C ;
GOWERS, CW ;
OROURKE, J ;
STORK, D ;
TARONI, A ;
CHALLIS, CD .
NUCLEAR FUSION, 1993, 33 (06) :863-873
[8]   A review of the dimensionless parameter scaling studies [J].
Cordey, JG ;
Balet, B ;
Campbell, D ;
Challis, CD ;
Christiansen, JP ;
Gormezano, C ;
Gowers, C ;
Muir, D ;
Righi, E ;
Saibene, GR ;
Stubberfield, PM ;
Thomsen, K .
PLASMA PHYSICS AND CONTROLLED FUSION, 1996, 38 (12A) :A67-A75
[9]  
CORDEY JG, 1997, P 16 INT C FUS EN MO, V1, P603
[10]   Comparisons and physics basis of tokamak transport models and turbulence simulations [J].
Dimits, AM ;
Bateman, G ;
Beer, MA ;
Cohen, BI ;
Dorland, W ;
Hammett, GW ;
Kim, C ;
Kinsey, JE ;
Kotschenreuther, M ;
Kritz, AH ;
Lao, LL ;
Mandrekas, J ;
Nevins, WM ;
Parker, SE ;
Redd, AJ ;
Shumaker, DE ;
Sydora, R ;
Weiland, J .
PHYSICS OF PLASMAS, 2000, 7 (03) :969-983