Stress duration modulates the spatiotemporal patterns of spine formation in the basolateral amygdala

被引:482
作者
Mitra, R
Jadhav, S
McEwen, BS [1 ]
Vyas, A
Chattarji, S
机构
[1] Natl Ctr Biol Sci, Bangalore 560065, Karnataka, India
[2] Rockefeller Univ, Neuroendocrinol Lab, New York, NY 10021 USA
基金
英国惠康基金;
关键词
anxiety; dendritic remodeling; immobilization; synapse; rats;
D O I
10.1073/pnas.0504011102
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
It has long been hypothesized that morphological and numerical alterations in dendritic spines underlie long-term structural encoding of experiences. Here we investigate the efficacy of aversive experience in the form of acute immobilization stress (AIS) and chronic immobilization stress (CIS) in modulating spine density in the basolateral amygdala (BLA) of male rats. We find that CIS elicits a robust increase in spine density across primary and secondary branches of BLA spiny neurons. We observed this CIS-induced spinogenesis in the BLA 1 d after the termination of CIS. In contrast, AIS fails to affect spine density or dendritic arborization when measured 1 d later. Strikingly, the same AIS causes a gradual increase in spine density 10 d later but without any effect on dendritic arbors. Thus, by modulating the duration of immobilization stress, it is possible to induce the formation of new spines without remodeling dendrites. However, unlike CIS-induced spine formation, the gradual increase in spine density 10 d after a single exposure to AIS is localized on primary dendrites. Finally, this delayed induction of BLA spinogenesis is paralleled by a gradual development of anxiety-like behavior on the elevated plus-maze 10 d after AIS. These findings demonstrate that stressful experiences can lead to the formation of new dendritic spines in the BLA, which is believed to be a locus of storage for fear memories. Our results also suggest that stress may facilitate symptoms of chronic anxiety disorders like post-traumatic stress disorder by enhancing synaptic connectivity in the BLA.
引用
收藏
页码:9371 / 9376
页数:6
相关论文
共 76 条
[1]  
Adamec RE, 1999, PHYSIOL BEHAV, V65, P723
[2]   STRUCTURAL-CHANGES ACCOMPANYING MEMORY STORAGE [J].
BAILEY, CH ;
KANDEL, ER .
ANNUAL REVIEW OF PHYSIOLOGY, 1993, 55 :397-426
[3]   NMDA receptors and L-type voltage-gated calcium channels contribute to long-term potentiation and different components of fear memory formation in the lateral amygdala [J].
Bauer, EP ;
Schafe, GE ;
LeDoux, JE .
JOURNAL OF NEUROSCIENCE, 2002, 22 (12) :5239-5249
[4]   Extracellular matrix and visual cortical plasticity: Freeing the synapse [J].
Berardi, N ;
Pizzorusso, T ;
Maffei, L .
NEURON, 2004, 44 (06) :905-908
[5]   Regulating axon branch stability: The role of p190 RhoGAP in repressing a retraction signaling pathway [J].
Billuart, P ;
Winter, CG ;
Maresh, A ;
Zhao, XS ;
Luo, LQ .
CELL, 2001, 107 (02) :195-207
[6]   Synaptic plasticity in the lateral amygdala: A cellular hypothesis of fear conditioning [J].
Blair, HT ;
Schafe, GE ;
Bauer, EP ;
Rodrigues, SM ;
LeDoux, JE .
LEARNING & MEMORY, 2001, 8 (05) :229-242
[7]   Spine motility: Phenomenology, mechanisms, and function [J].
Bonhoeffer, T ;
Yuste, R .
NEURON, 2002, 35 (06) :1019-1027
[8]   Magnetic resonance imaging-based measurement of hippocampal volume in posttraumatic stress disorder related to childhood physical and sexual abuse - A preliminary report [J].
Bremner, JD ;
Randall, P ;
Vermetten, E ;
Staib, L ;
Bronen, RA ;
Mazure, C ;
Capelli, S ;
McCarthy, G ;
Innis, RB ;
Charney, DS .
BIOLOGICAL PSYCHIATRY, 1997, 41 (01) :23-32
[9]  
Brouns MR, 2000, DEVELOPMENT, V127, P4891
[10]   p190 RhoGAP is the principal Src substrate in brain and regulates axon outgrowth, guidance and fasciculation [J].
Brouns, MR ;
Matheson, SF ;
Settleman, J .
NATURE CELL BIOLOGY, 2001, 3 (04) :361-367