Maillard reaction products in tissue proteins: New products and new perspectives

被引:437
作者
Thorpe, SR
Baynes, JW [1 ]
机构
[1] Univ S Carolina, Grad Sci Res Ctr, Dept Chem & Biochem, Columbia, SC 29208 USA
[2] Univ S Carolina, Sch Med, Columbia, SC USA
关键词
advanced glycation end-product (AGE); advanced lipoxidation end-product (ALE); N-epsilon-(carboxymethyl)lysine; glyoxal; Maillard reaction; methylglyoxal;
D O I
10.1007/s00726-003-0017-9
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The chemical modification of protein by nonenzymatic browning or Maillard reactions increases with age and in disease. Maillard products are formed by reactions of both carbohydrate- and lipid-derived intermediates with proteins, leading to formation of advanced glycation and lipoxidation end-products (AGE/ALEs). These modifications and other oxidative modifications of amino acids increase together in proteins and are indicators of tissue aging and pathology. In this review, we describe the major pathways and characteristic products of chemical modification of proteins by carbohydrates and lipids during the Maillard reactions and identify major intersections between these pathways. We also describe a new class of intracellular sulfhydryl modifications, Cys-AGE/ALEs, that may play an important role in regulatory biology and represent a primitive link between nonenzymatic and enzymatic chemistry in biological systems.
引用
收藏
页码:275 / 281
页数:7
相关论文
共 25 条
[1]   N-epsilon-(carboxyethyl)lysine, a product of the chemical modification of proteins by methylglyoxal, increases with age in human lens proteins [J].
Ahmed, MU ;
Frye, EB ;
Degenhardt, TP ;
Thorpe, SR ;
Baynes, JW .
BIOCHEMICAL JOURNAL, 1997, 324 :565-570
[2]   The myeloperoxidase system of human phagocytes generates Nε-(carboxymethyl)lysine on proteins:: a mechanism for producing advances glycation end products at sites of inflammation [J].
Anderson, MM ;
Requena, JR ;
Crowley, JR ;
Thorpe, SR ;
Heinecke, JW .
JOURNAL OF CLINICAL INVESTIGATION, 1999, 104 (01) :103-113
[3]   Glycoxidation and lipoxidation in atherogenesis [J].
Baynes, JW ;
Thorpe, SR .
FREE RADICAL BIOLOGY AND MEDICINE, 2000, 28 (12) :1708-1716
[4]   The Maillard hypothesis on aging: Time to focus on DNA [J].
Baynes, JW .
INCREASING HEALTHY LIFE SPAN: CONVENTIONAL MEASURES AND SLOWING THE INNATE AGING PROCESS, 2002, 959 :360-367
[5]   ROLE OF OXIDATIVE STRESS IN DEVELOPMENT OF COMPLICATIONS IN DIABETES [J].
BAYNES, JW .
DIABETES, 1991, 40 (04) :405-412
[6]   From life to death - the struggle between chemistry and biology during aging: the Maillard reaction as an amplifier of genomic damage [J].
Baynes, JW .
BIOGERONTOLOGY, 2000, 1 (03) :235-246
[7]  
BAYNES JW, 1999, DIABETES NEW MILLENN, P337
[8]   Formation pathways for lysine-arginine cross-links derived from hexoses and pentoses by Maillard processes - Unraveling the structure of a pentosidine precursor [J].
Biemel, KM ;
Reihl, O ;
Conrad, J ;
Lederer, MO .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (26) :23405-23412
[9]  
CHEN HJC, 1993, J CARBOHYD CHEM, V12, P731
[10]   The advanced glycation end product, N-(epsilon)(carboxymethyl)lysine, is a product of both lipid peroxidation and glycoxidation reactions [J].
Fu, MX ;
Requena, JR ;
Jenkins, AJ ;
Lyons, TJ ;
Baynes, JW ;
Thorpe, SR .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (17) :9982-9986