Chaperone activity and structure of monomeric polypeptide binding domains of GroEL

被引:139
作者
Zahn, R
Buckle, AM
Perrett, S
Johnson, CM
Corrales, FJ
Golbik, R
Fersht, AR
机构
[1] Cambridge Ctr. for Protein Eng., Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, Lensfield Road
关键词
protein folding; hsp60; cpn60; barnase; minichaperone;
D O I
10.1073/pnas.93.26.15024
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The chaperonin GroEL is a large complex composed of 14 identical 57-kDa subunits that requires ATP and GroES for some of its activities. We find that a monomeric polypeptide corresponding to residues 191 to 345 has the activity of the tetradecamer both in facilitating the refolding of rhodanese and cyclophilin A in the absence of ATP and in catalyzing the unfolding of native barnase. Its crystal structure, solved at 2.5 Angstrom resolution, shows a well-ordered domain with the same fold as in intact GroEL, We have thus isolated the active site of the complex allosteric molecular chaperone, which functions as a ''minichaperone.'' This has mechanistic implications: the presence of a central cavity in the GroEL complex is not essential for those representative activities in vitro, and neither are the allosteric properties. The function of the allosteric behavior on the binding of GroES and ATP must be to regulate the affinity of the protein for iis various substrates in vivo, where the cavity may also he required for special functions.
引用
收藏
页码:15024 / 15029
页数:6
相关论文
共 40 条
[1]  
BOCHKAREVA ES, 1992, J BIOL CHEM, V267, P6796
[2]   The 2.4 angstrom crystal structure of the bacterial chaperonin GroEL complexed with ATP gamma S [J].
Boisvert, DC ;
Wang, JM ;
Otwinowski, Z ;
Horwich, AL ;
Sigler, PB .
NATURE STRUCTURAL BIOLOGY, 1996, 3 (02) :170-177
[3]   THE CRYSTAL-STRUCTURE OF THE BACTERIAL CHAPERONIN GROEL AT 2.8-ANGSTROM [J].
BRAIG, K ;
OTWINOWSKI, Z ;
HEGDE, R ;
BOISVERT, DC ;
JOACHIMIAK, A ;
HORWICH, AL ;
SIGLER, PB .
NATURE, 1994, 371 (6498) :578-586
[4]   CONFORMATIONAL VARIABILITY IN THE REFINED STRUCTURE OF THE CHAPERONIN GROEL AT 2.8 ANGSTROM RESOLUTION [J].
BRAIG, K ;
ADAMS, PD ;
BRUNGER, AT .
NATURE STRUCTURAL BIOLOGY, 1995, 2 (12) :1083-1094
[5]  
Brunger A., 1992, XPLOR SYSTEM CRYSTAL
[6]   LOCATION OF A FOLDING PROTEIN AND SHAPE CHANGES IN GROEL-GROES COMPLEXES IMAGED BY CRYOELECTRON MICROSCOPY [J].
CHEN, S ;
ROSEMAN, AM ;
HUNTER, AS ;
WOOD, SP ;
BURSTON, SG ;
RANSON, NA ;
CLARKE, AR ;
SAIBIL, HR .
NATURE, 1994, 371 (6494) :261-264
[7]   Toward a mechanism for GroEL center dot GroES chaperone activity: An ATPase-gated and -pulsed folding and annealing cage [J].
Corrales, FJ ;
Fersht, AR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (09) :4509-4512
[8]   Protein folding in the cell: Competing models of chaperonin function [J].
Ellis, RJ ;
Hartl, FU .
FASEB JOURNAL, 1996, 10 (01) :20-26
[9]   ACCURATE BOND AND ANGLE PARAMETERS FOR X-RAY PROTEIN-STRUCTURE REFINEMENT [J].
ENGH, RA ;
HUBER, R .
ACTA CRYSTALLOGRAPHICA SECTION A, 1991, 47 :392-400
[10]   THE GROES AND GROEL HEAT-SHOCK GENE-PRODUCTS OF ESCHERICHIA-COLI ARE ESSENTIAL FOR BACTERIAL-GROWTH AT ALL TEMPERATURES [J].
FAYET, O ;
ZIEGELHOFFER, T ;
GEORGOPOULOS, C .
JOURNAL OF BACTERIOLOGY, 1989, 171 (03) :1379-1385