How the Smads regulate transcription

被引:300
作者
Ross, Sarah [1 ]
Hill, Caroline S. [1 ]
机构
[1] Canc Res UK London Res Inst, Lincolns Inn Fields Labs, Lab Dev Signalling, London WC2A 3PX, England
关键词
TGF-beta superfamily; Smad; transcription; chromatin; post-translational modifications;
D O I
10.1016/j.biocel.2007.09.006
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The primary signalling pathway downstream of ligands of the transforming growth factor beta (TGF-beta) superfamily is the Smad pathway. Activated receptors phosphorylate receptor-regulated Smads, which form homomeric complexes and heteromeric complexes with Smad4. These activated Smad complexes accumulate in the nucleus, where they are directly involved in the regulation of transcription of target genes. This apparently very simple pathway is subject to complex regulation, much of which is at the level of post-translational modifications of pathway components, in particular, the Smads. The enzymes responsible may be constitutively active, may be cell type-specific or may be regulated by other signalling pathways or by the cell cycle. In this way, signals from TGF-beta superfamily ligands are integrated with signals from other growth factors and cytokines, are regulated by the cell cycle and are dependent on cell type. This may go some way to explaining the pleiotropic nature of TGF-beta superfamily responses. In this review we focus on the mechanisms whereby the Smads are modified and regulated. We then go on to discuss how the activated Smad complexes regulate transcription. (c) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:383 / 408
页数:26
相关论文
共 195 条
[1]   c-Ski acts as a transcriptional co-repressor in transforming growth factor-β signaling through interaction with Smads [J].
Akiyoshi, S ;
Inoue, H ;
Hanai, J ;
Kusanagi, K ;
Nemoto, N ;
Miyazono, K ;
Kawabata, M .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (49) :35269-35277
[2]   TGF-β-induced repression of CBFA1 by Smad3 decreases cbfa1 and osteocalcin expression and inhibits osteoblast differentiation [J].
Alliston, T ;
Choy, L ;
Ducy, P ;
Karsenty, G ;
Derynck, R .
EMBO JOURNAL, 2001, 20 (09) :2254-2272
[3]   Repression of bone morphogenetic protein and activin-inducible transcription by Evi-1 [J].
Alliston, T ;
Ko, TC ;
Cao, YN ;
Liang, YY ;
Feng, XH ;
Chang, CB ;
Derynck, R .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2005, 280 (25) :24227-24237
[4]   The transcriptional role of Smads and FAST (FoxH1) in TGFβ and activin signalling [J].
Attisano, L ;
Silvestri, C ;
Izzi, L ;
Labbé, E .
MOLECULAR AND CELLULAR ENDOCRINOLOGY, 2001, 180 (1-2) :3-11
[5]   In vivo convergence of BMP and MAPK signaling pathways: impact of differential Smad1 phosphorylation on development and homeostasis [J].
Aubin, J ;
Davy, A ;
Soriano, P .
GENES & DEVELOPMENT, 2004, 18 (12) :1482-1494
[6]   Smad6 as a transcriptional corepressor [J].
Bai, ST ;
Shi, XM ;
Yang, XL ;
Cao, X .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (12) :8267-8270
[7]   Itch E3 ligase-mediated regulation of TGF-β signaling by modulating Smad2 phosphorylation [J].
Bai, YL ;
Yang, C ;
Hu, K ;
Elly, C ;
Liu, YC .
MOLECULAR CELL, 2004, 15 (05) :825-831
[8]   Kinesin-mediated transport of Smad2 is required for signaling in response to TGF-β Ligands [J].
Batut, Julie ;
Howell, Michael ;
Hill, Caroline S. .
DEVELOPMENTAL CELL, 2007, 12 (02) :261-274
[9]   Mechanisms of disease:: Role of transforming growth factor β in human disease. [J].
Blobe, GC ;
Schiemann, WP ;
Lodish, HF .
NEW ENGLAND JOURNAL OF MEDICINE, 2000, 342 (18) :1350-1358
[10]   TGF-β induces assembly of a Smad2-Smurf2 ubiquitin ligase complex that targets SnoN for degradation [J].
Bonni, S ;
Wang, HR ;
Causing, CG ;
Kavsak, P ;
Stroschein, SL ;
Luo, KX ;
Wrana, JL .
NATURE CELL BIOLOGY, 2001, 3 (06) :587-595