Generating functions of circular codes

被引:11
作者
Bassino, F [1 ]
机构
[1] Univ Marne La Vallee, IGM, F-93166 Noisy Le Grand, France
关键词
D O I
10.1006/aama.1998.0613
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We describe in terms of different parameters the generating series of the star of a circular code. We extend the characterization of length distributions of circular codes established for a finite alphabet by Schutzenberger to an arbitrary "weighted" alphabet. In this framework, we give a new characterization of these length distributions. This one directly concerns the coefficients of the generating series of the code instead of the number of primitive conjugacy classes. This result shows that we can decide whether a finite sequence is the length distribution of a circular code. We also establish a necessary and sufficient condition for a series to be the length distribution of a maximal circular code over a finite alphabet. (C) 1999 Academic Press.
引用
收藏
页码:1 / 24
页数:24
相关论文
共 18 条
[1]  
Arques D. G., 1995, STACS 95. 12th Annual Symposium on Theoretical Aspects of Computer Science. Proceedings, P640
[2]  
BASSINO F, 1996, THESIS U MARNE LA VA
[3]  
Berstel J., 1985, Pure Appl. Math., V117
[4]  
BRUYERE V, 1996, LECT NOTES COMPUT SC, V1099, P24
[5]   SIMPLE PROOFS OF SOME THEOREMS ON NOISELESS CHANNELS [J].
CSISZAR .
INFORMATION AND CONTROL, 1969, 14 (03) :285-&
[6]   EACH REGULAR CODE IS INCLUDED IN A MAXIMAL REGULAR CODE [J].
EHRENFEUCHT, A ;
ROZENBERG, G .
RAIRO-INFORMATIQUE THEORIQUE ET APPLICATIONS-THEORETICAL INFORMATICS AND APPLICATIONS, 1986, 20 (01) :89-96
[7]  
GAUDIER H, 1996, LEMME SIGNES
[8]   CODES WITH BOUNDED SYNCHRONIZATION DELAY [J].
GOLOMB, SW ;
GORDON, B .
INFORMATION AND CONTROL, 1965, 8 (04) :355-&
[9]  
Golomb SW., 1958, CAN J MATH, V10, P202, DOI [10.4153/CJM-1958-023-9, DOI 10.4153/CJM-1958-023-9]
[10]   CHANNELS WHICH TRANSMIT LETTERS OF UNEQUAL DURATION [J].
KRAUSE, RM .
INFORMATION AND CONTROL, 1962, 5 (01) :13-+