Kernel estimation in high-energy physics

被引:355
作者
Cranmer, K [1 ]
机构
[1] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA
基金
美国国家科学基金会;
关键词
kernel estimation; multivariate probability density estimation KEYS; RootPDE; WinPDE; PDE; HEPUKeys; unbinned; non-parametric;
D O I
10.1016/S0010-4655(00)00243-5
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Kernel estimation provides an unbinned and non-parametric estimate of the probability density function from which a set of data is drawn. In the first section, after a brief discussion on parametric and non-parametric methods, the theory of kernel estimation is developed for univariate and multivariate settings. The second section discusses some of the applications of kernel estimation to high-energy physics. The third section provides an overview of the available univariate and multivariate packages. This paper concludes with a discussion of the inherent advantages of kernel estimation techniques and systematic errors associated with the estimation of parent distributions. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:198 / 207
页数:10
相关论文
共 12 条
[1]   ON BANDWIDTH VARIATION IN KERNEL ESTIMATES - A SQUARE ROOT LAW [J].
ABRAMSON, IS .
ANNALS OF STATISTICS, 1982, 10 (04) :1217-1223
[2]   MULTIQUADRIC RADIAL BASIS FUNCTIONS FOR REPRESENTING MULTIDIMENSIONAL HIGH-ENERGY PHYSICS DATA [J].
ALLISON, J .
COMPUTER PHYSICS COMMUNICATIONS, 1993, 77 (03) :377-395
[3]  
[Anonymous], 1992, MULTIVARIATE DENSITY
[4]  
*BAB COLL, BAB PHYS BOOK
[5]  
Cranmer K.S., 2000, 99144 ALEPH
[6]  
FRODESEN AG, 1979, PROBABILITTY STATIST, P424
[7]   A NEW MULTIVARIATE TECHNIQUE FOR TOP-QUARK SEARCH [J].
HOLMSTROM, L ;
SAIN, SR ;
MIETTINEN, HE .
COMPUTER PHYSICS COMMUNICATIONS, 1995, 88 (2-3) :195-210
[8]  
Hu H, 2000, CERN REPORT, V2000, P109
[9]  
KNUTESON B, 1998, 003396 D0
[10]  
MIETTINEN H, 1994, 002145 D0