Leveraging Nanocavity Harmonics for Control of Optical Processes in 2D Semiconductors

被引:219
作者
Akselrod, Gleb M. [1 ,2 ]
Ming, Tian [4 ]
Argyropoulos, Christos [1 ,2 ,5 ]
Hoang, Thang B. [1 ,3 ]
Lin, Yuxuan [4 ]
Ling, Xi [4 ]
Smith, David R. [1 ,2 ,3 ]
Kong, Jing [4 ]
Mikkelsen, Maiken H. [1 ,2 ,3 ]
机构
[1] Duke Univ, Ctr Metamat & Integrated Plasmon, Durham, NC 27708 USA
[2] Duke Univ, Dept Elect & Comp Engn, Durham, NC 27708 USA
[3] Duke Univ, Dept Phys, Durham, NC 27708 USA
[4] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA
[5] Univ Nebraska, Dept Elect & Comp Engn, Lincoln, NE 68588 USA
关键词
Plasmonics; nanocavity; nanocube; 2D semiconductors; MoS2; photoluminescence enhancement; SINGLE-MOLECULE FLUORESCENCE; PLASMON RESONANCES; EMISSION ENHANCEMENT; MODES; GENERATION;
D O I
10.1021/acs.nanolett.5b01062
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Optical cavities with multiple tunable resonances have the potential to provide unique electromagnetic environments at two or more distinct wavelengths critical for control of optical processes such as nonlinear generation, entangled photon generation, or photoluminescence (PL) enhancement. Here, we show a plasmonic nano cavity based on a nanopatch antenna design that has two tunable resonant modes in the visible spectrum separated by 350 nm and with line widths of similar to 60 nm. The importance of utilizing two resonances simultaneously is demonstrated by integrating monolayer MoS2, a two-dimensional semiconductor, into the colloidally synthesized nanocavities. We observe a 2000-fold enhancement in the PL intensity Of MoS2-which has intrinsically low absorption and small quantum yield-at room temperature, enabled by the combination of tailored absorption enhancement at the first harmonic and PL quantum-yield enhancement at the fundamental resonance.
引用
收藏
页码:3578 / 3584
页数:7
相关论文
共 30 条
[1]  
Akselrod GM, 2014, NAT PHOTONICS, V8, P835, DOI [10.1038/NPHOTON.2014.228, 10.1038/nphoton.2014.228]
[2]   Regulated and entangled photons from a single quantum dot [J].
Benson, O ;
Santori, C ;
Pelton, M ;
Yamamoto, Y .
PHYSICAL REVIEW LETTERS, 2000, 84 (11) :2513-2516
[3]   Nonlinear frequency conversion using high-quality modes in GaAs nanobeam cavities [J].
Buckley, Sonia ;
Radulaski, Marina ;
Zhang, Jingyuan Linda ;
Petykiewicz, Jan ;
Biermann, Klaus ;
Vuckovic, Jelena .
OPTICS LETTERS, 2014, 39 (19) :5673-5676
[4]   Numerical studies of the modification of photodynamic processes by film-coupled plasmonic nanoparticles [J].
Ciraci, Cristian ;
Rose, Alec ;
Argyropoulos, Christos ;
Smith, David R. .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2014, 31 (11) :2601-2607
[5]   Self-Assembled Plasmonic Nanoparticle Clusters [J].
Fan, Jonathan A. ;
Wu, Chihhui ;
Bao, Kui ;
Bao, Jiming ;
Bardhan, Rizia ;
Halas, Naomi J. ;
Manoharan, Vinothan N. ;
Nordlander, Peter ;
Shvets, Gennady ;
Capasso, Federico .
SCIENCE, 2010, 328 (5982) :1135-1138
[6]   Controlling the spontaneous emission rate of monolayer MoS2 in a photonic crystal nanocavity [J].
Gan, Xuetao ;
Gao, Yuanda ;
Mak, Kin Fai ;
Yao, Xinwen ;
Shiue, Ren-Jye ;
van der Zande, Arend ;
Trusheim, Matthew E. ;
Hatami, Fariba ;
Heinz, Tony F. ;
Hone, James ;
Englund, Dirk .
APPLIED PHYSICS LETTERS, 2013, 103 (18)
[7]   Excitation and emission enhancement of single molecule fluorescence through multiple surface-plasmon resonances on metal trimer nanoantennas [J].
Giannini, V. ;
Sanchez-Gil, J. A. .
OPTICS LETTERS, 2008, 33 (09) :899-901
[8]   Integrated nanophotonics based on nanowire plasmons and atomically thin material [J].
Goodfellow, Kenneth M. ;
Beams, Ryan ;
Chakraborty, Chitraleema ;
Novotny, Lukas ;
Vamivakas, A. N. .
OPTICA, 2014, 1 (03) :149-152
[9]   Plasmon resonances of a gold nanostar [J].
Hao, Feng ;
Nehl, Colleen L. ;
Hafner, Jason H. ;
Nordlander, Peter .
NANO LETTERS, 2007, 7 (03) :729-732
[10]  
Kavokin A., 2011, SERIES SEMICONDUCTOR