Semisymmetric cubic graphs as regular covers of K3,3

被引:66
作者
Wang, Chang Qun [1 ]
Chen, Tie Sheng [1 ]
机构
[1] Zhengzhou Univ, Dept Math, Zhengzhou 450052, Peoples R China
基金
中国国家自然科学基金;
关键词
semisymmetric graph; symmetric graph; covering graph; one-regular graph;
D O I
10.1007/s10114-007-0998-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A regular graph X is called semisymmetric if it is edge-transitive but not vertex-transitive. For G <= AutX, we call a G-cover X semisymmetric if X is semisymmetric, and call a G-cover X one-regular if AutX acts regularly on its arc-set. In this paper, we give the sufficient and necessary conditions for the existence of one-regular or semisymmetric Z(n)-covers of K-3,K-3. Also, an infinite family of semisymmetric Z(n) x Z(n)-covers of K-3,K-3 are constructed.
引用
收藏
页码:405 / 416
页数:12
相关论文
共 22 条
[1]  
Bouwer I. Z., 1972, Journal of Combinatorial Theory, Series B, V12, P32, DOI 10.1016/0095-8956(72)90030-5
[2]  
BOUWER IZ, 1968, B CAN MATH SOC, V11, P533
[3]  
Dixon JD., 1996, PERMUTATION GROUPS
[4]   A classification of semisymmetric graphs of order 2pq [J].
Du, SF ;
Xu, MY .
COMMUNICATIONS IN ALGEBRA, 2000, 28 (06) :2685-2715
[5]  
DU SF, 2000, UNPUB RES NOTES SEMI
[6]  
DU SF, 1995, GRAPH THEORY NOTES N, V29, P148
[7]   s-regular cubic graphs as coverings of the complete bipartite graph K3,3 [J].
Feng, YQ ;
Kwak, JH .
JOURNAL OF GRAPH THEORY, 2004, 45 (02) :101-112
[8]  
Folkman J., 1967, J. Combinatorial Theory, V3, P215
[9]   AUTOMORPHISMS OF TRIVALENT GRAPHS [J].
GOLDSCHMIDT, DM .
ANNALS OF MATHEMATICS, 1980, 111 (02) :377-406
[10]  
Gorenstein D., 1980, Finite groups, V2