Sensitivity analysis, Monte Carlo risk analysis, and Bayesian uncertainty assessment

被引:116
作者
Greenland, S [1 ]
机构
[1] Univ Calif Los Angeles, Sch Publ Hlth, Dept Epidemiol, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Coll Letters & Sci, Los Angeles, CA 90095 USA
关键词
Bayesian analysis; epidemiologic methods; Monte Carlo analysis; relative risk; risk assessment;
D O I
10.1111/0272-4332.214136
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
Standard statistical methods understate the uncertainty one should attach to effect estimates obtained from observational data. Among the methods used to address this problem are sensitivity analysis, Monte Carlo risk analysis (MCRA), and Bayesian uncertainty assessment. Estimates from MCRAs have been presented as if they were valid frequentist or Bayesian results, but examples show that they need not be either in actual applications. It is concluded that both sensitivity analyses and MCRA should begin with the same type of prior specification effort as Bayesian analysis.
引用
收藏
页码:579 / 583
页数:5
相关论文
共 16 条
[1]  
Breslow NE, 1987, STAT METHODS CANC RE, VII
[2]  
Carroll RJ., 1995, MEASUREMENT ERROR NO
[3]  
Efron B., 1993, INTRO BOOTSTRAP, V1st ed., DOI DOI 10.1201/9780429246593
[4]  
Good IJ., 1983, Good Thinking
[5]   Probability logic and probabilistic induction [J].
Greenland, S .
EPIDEMIOLOGY, 1998, 9 (03) :322-332
[6]  
Greenland S., 1998, 1997 P BIOM SECT, P19
[7]  
*KS CRUMP GROUP IN, 2000, EST LIF SKIN CANC RI
[8]  
Leonard T., 1999, BAYESIAN METHODS
[9]   Sensitivity analysis for incomplete contingency tables: the Slovenian plebiscite case [J].
Molenberghs, G ;
Kenward, MG ;
Goetghebeur, E .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2001, 50 :15-29
[10]  
Phillips CV, 2000, AM J EPIDEMIOL, V151, pS41