Methylene blue adsorption on activated carbon prepared from Posidonia oceanica (L.) dead leaves: Kinetics and equilibrium studies

被引:297
作者
Dural, Mehmet Ulas [2 ]
Cavas, Levent [2 ,3 ]
Papageorgiou, Sergios K. [1 ]
Katsaros, Fotis K. [1 ]
机构
[1] NCSR Demokritos, Inst Phys Chem, Athens 15310, Greece
[2] Dokuz Eylul Univ, Grad Sch Nat & Appl Sci, Dept Chem, TR-35160 Izmir, Turkey
[3] Dokuz Eylul Univ, Fac Arts & Sci, Dept Chem, Div Biochem, TR-35160 Izmir, Turkey
关键词
Activated carbon; Posidonia oceanica (L.); Chemical activation; Methylene blue adsorption; Kinetics; BASIC DYE ADSORPTION; CHEMICAL ACTIVATION; AQUEOUS-SOLUTIONS; PORE STRUCTURE; SURFACE-CHEMISTRY; BIOSORPTION; WASTE; REMOVAL; EQUATION; BIOMASS;
D O I
10.1016/j.cej.2010.12.038
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Posidonia oceanica (L) is an endemic species in the Mediterranean Sea, which, like terrestrial plants, loses it leaves seasonally. The dead leaves are accumulated on the beaches in huge quantities as waste material, causing great environmental and economical problems. The dead biomass offers an abundant, renewable and low cost precursor for the production of activated carbon (AC). In that respect ACs were prepared by chemical activation of P. oceanica (L) dead leaves. The preparation process consisted of zinc chloride impregnation at ratios up to 45%, followed by carbonization in nitrogen atmosphere at temperatures up to 873 K. The prepared P. oceanica (L.) activated carbons (POAC) were studied by SEM and Nitrogen porosimetry and the pore structural characteristics were determined. Concerning the POAC45 sample, a specific surface area of 1483 m(2)/g and a total pore volume of about 1 cm(3)/g were achieved, while both microporosity and mesoporosity were obtained. The adsorption potential of POAC for the removal of methylene blue (MB) from aqueous solutions was also investigated under varying conditions of initial concentration, carbon dosage, pH, temperature and the optimum experimental conditions were determined. The samples revealed relatively fast kinetics reaching equilibrium in around 60 min, which follow the second order rate equation, while adsorption was unaffected by the pH of the solution. The Langmuir model provided the best fit to the experimental data and sorption capacity increased with increasing temperature. The results showed that proposed precursor lead to AC with increased sorption capacity for MB reaching a value of 285.7 mg/g at 318 K. In conclusion, P. oceanica (L.) dead leaves can be used as a raw material for preparation of high quality activated carbon. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:77 / 85
页数:9
相关论文
共 71 条
[1]   Fixed-bed adsorption of reactive azo dye onto granular activated carbon prepared from waste [J].
Ahmad, A. A. ;
Hameed, B. H. .
JOURNAL OF HAZARDOUS MATERIALS, 2010, 175 (1-3) :298-303
[2]   Preparation and characterization of activated carbon from oil palm wood and its evaluation on methylene blue adsorption [J].
Ahmad, A. L. ;
Loh, M. M. ;
Aziz, J. A. .
DYES AND PIGMENTS, 2007, 75 (02) :263-272
[3]   The preparation of active carbons from coal by chemical and physical activation [J].
Ahmadpour, A ;
Do, DD .
CARBON, 1996, 34 (04) :471-479
[4]   INTRAPARTICLE DIFFUSION OF A BASIC DYE DURING ADSORPTION ONTO SPHAGNUM PEAT [J].
ALLEN, SJ ;
MCKAY, G ;
KHADER, KYH .
ENVIRONMENTAL POLLUTION, 1989, 56 (01) :39-50
[5]   Batch and column studies of biosorption of heavy metals by Caulerpa lentillifera [J].
Apiratikul, Ronbanchob ;
Pavasant, Prasert .
BIORESOURCE TECHNOLOGY, 2008, 99 (08) :2766-2777
[6]   Preparation and characteristics of agricultural waste activated carbon by physical activation having micro- and mesopores [J].
Aworn, Amphol ;
Thiravetyan, Paitip ;
Nakbanpote, Woranan .
JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2008, 82 (02) :279-285
[7]   Production of granular activated carbon from fruit stones and nutshells and evaluation of their physical, chemical and adsorption properties [J].
Aygün, A ;
Yenisoy-Karakas, S ;
Duman, I .
MICROPOROUS AND MESOPOROUS MATERIALS, 2003, 66 (2-3) :189-195
[8]   THE ADSORPTION OF METHYLENE-BLUE BY ACTIVE-CARBON [J].
BARTON, SS .
CARBON, 1987, 25 (03) :343-350
[9]   Azadirachta indica leaf powder as an effective biosorbent for dyes:: a case study with aqueous Congo Red solutions [J].
Bhattacharyya, KG ;
Sharma, A .
JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2004, 71 (03) :217-229
[10]   THE EXCHANGE ADSORPTION OF IONS FROM AQUEOUS SOLUTIONS BY ORGANIC ZEOLITES .2. [J].
BOYD, GE ;
ADAMSON, AW ;
MYERS, LS .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1947, 69 (11) :2836-2848