Solution of a one-dimensional diffusion-reaction model with spatial asymmetry

被引:35
作者
Hinrichsen, H
Krebs, K
Peschel, I
机构
[1] FREE UNIV BERLIN, FACHBEREICH PHYS, D-14195 BERLIN, GERMANY
[2] UNIV BONN, INST PHYS, D-53115 BONN, GERMANY
来源
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER | 1996年 / 100卷 / 01期
关键词
D O I
10.1007/s002570050100
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
We study classical particles on the sites of an open chain which diffuse, coagulate and decoagulate preferentially in one direction. The master equation is expressed in terms of a spin one-half Hamiltonian H and the model is shown to be completely solvable if all processes have the same asymmetry. The relaxational spectrum is obtained directly from H and via the equations of motion for strings of empty sites. The structure and the solvability of these equations are investigated in the general case. Two phases are shown to exist for small and large asymmetry, respectively, which differ in their stationary properties.
引用
收藏
页码:105 / 114
页数:10
相关论文
共 49 条
  • [1] REACTION-DIFFUSION PROCESSES AS PHYSICAL REALIZATIONS OF HECKE ALGEBRAS
    ALCARAZ, FC
    RITTENBERG, V
    [J]. PHYSICS LETTERS B, 1993, 314 (3-4) : 377 - 380
  • [2] REACTION-DIFFUSION PROCESSES, CRITICAL-DYNAMICS, AND QUANTUM CHAINS
    ALCARAZ, FC
    DROZ, M
    HENKEL, M
    RITTENBERG, V
    [J]. ANNALS OF PHYSICS, 1994, 230 (02) : 250 - 302
  • [3] LATTICE DIFFUSION AND HEISENBERG-FERROMAGNET
    ALEXANDER, S
    HOLSTEIN, T
    [J]. PHYSICAL REVIEW B, 1978, 18 (01): : 301 - 302
  • [4] Baxter RJ., 1982, Exactly solved models in statistical mechanics
  • [5] BEDEAUX D, 1970, J STAT PHYS, V2, P1
  • [6] STATICS AND DYNAMICS OF A DIFFUSION-LIMITED REACTION - ANOMALOUS KINETICS, NONEQUILIBRIUM SELF-ORDERING, AND A DYNAMIC TRANSITION
    BENAVRAHAM, D
    BURSCHKA, MA
    DOERING, CR
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1990, 60 (5-6) : 695 - 728
  • [7] TRANSITION IN THE RELAXATION DYNAMICS OF A REVERSIBLE DIFFUSION-LIMITED REACTION
    BURSCHKA, MA
    DOERING, CR
    BENAVRAHAM, D
    [J]. PHYSICAL REVIEW LETTERS, 1989, 63 (07) : 700 - 703
  • [8] QUANTUM HAMILTONIANS AND SELF-ORGANIZED CRITICALITY
    CARDY, J
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 1994, 8 (25-26): : 3463 - 3471
  • [9] RENORMALIZATION GROUP TRANSFORMATION FOR THE MASTER EQUATION OF A KINETIC ISING CHAIN
    DEKER, U
    HAAKE, F
    [J]. ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1979, 35 (03): : 281 - 285
  • [10] AN EXACT SOLUTION OF A ONE-DIMENSIONAL ASYMMETRIC EXCLUSION MODEL WITH OPEN BOUNDARIES
    DERRIDA, B
    DOMANY, E
    MUKAMEL, D
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1992, 69 (3-4) : 667 - 687