Direct measurement of the electric-field distribution in a light-emitting electrochemical cell

被引:260
作者
Slinker, Jason D.
DeFranco, John A.
Jaquith, Michael J.
Silveira, William R.
Zhong, Yu-Wu
Moran-Mirabal, Jose M.
Craighead, Harold G.
Abruna, Hector D.
Marohn, John A.
Malliaras, George G. [1 ]
机构
[1] Cornell Univ, Dept Mat Sci & Engn, Ithaca, NY 14853 USA
[2] Cornell Univ, Dept Chem & Chem Biol, Ithaca, NY 14853 USA
[3] Cornell Univ, Sch Appl & Engn Phys, Ithaca, NY 14853 USA
基金
美国国家科学基金会;
关键词
D O I
10.1038/nmat2021
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The interplay between ionic and electronic charge carriers in mixed conductors offers rich physics and unique device potential. In light-emitting electrochemical cells (LEECs), for example, the redistribution of ions assists the injection of electronic carriers and leads to efficient light emission. The mechanism of operation of LEECs has been controversial, as there is no consensus regarding the distribution of electric field in these devices. Here, we probe the operation of LEECs using electric force microscopy on planar devices. We show that obtaining the appropriate boundary conditions is essential for capturing the underlying device physics. A patterning scheme that avoids overlap between the mixed-conductor layer and the metal electrodes enabled the accurate in situ measurement of the electric-field distribution. The results show that accumulation and depletion of mobile ions near the electrodes create high interfacial electric fields that enhance the injection of electronic carriers.
引用
收藏
页码:894 / 899
页数:6
相关论文
共 51 条
[1]   Cascaded light-emitting devices based on a ruthenium complex [J].
Bernards, DA ;
Slinker, JD ;
Malliaras, GG ;
Flores-Torres, S ;
Abruña, HD .
APPLIED PHYSICS LETTERS, 2004, 84 (24) :4980-4982
[2]   Organic light-emitting devices with laminated top contacts [J].
Bernards, DA ;
Biegala, T ;
Samuels, ZA ;
Slinker, JD ;
Malliaras, GG ;
Flores-Torres, S ;
Abruña, HD ;
Rogers, JA .
APPLIED PHYSICS LETTERS, 2004, 84 (18) :3675-3677
[3]   Observation of electroluminescence and photovoltaic response in ionic junctions [J].
Bernards, Daniel A. ;
Flores-Torres, Samuel ;
Abruna, Hector D. ;
Malliaras, George G. .
SCIENCE, 2006, 313 (5792) :1416-1419
[4]   Electroluminescence in ruthenium(II) complexes [J].
Bernhard, S ;
Barron, JA ;
Houston, PL ;
Abruña, HD ;
Ruglovksy, JL ;
Gao, XC ;
Malliaras, GG .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2002, 124 (45) :13624-13628
[5]  
Bernhard S, 2002, ADV MATER, V14, P433, DOI 10.1002/1521-4095(20020318)14:6<433::AID-ADMA433>3.0.CO
[6]  
2-W
[7]   Efficient and stable solid-state light-emitting electrochemical cell using tris(4,7-diphenyl-1,10-phenanthroline)ruthenium(II) hexafluorophosphate [J].
Bolink, HJ ;
Cappelli, L ;
Coronado, E ;
Grätzel, M ;
Nazeeruddin, MK .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (01) :46-47
[8]  
Bruce P. G., 1995, SOLID STATE ELECTROC
[9]   Thin-film solid-state electroluminescent devices based on tris(2,2′-bipyridine)ruthenium(II) complexes [J].
Buda, M ;
Kalyuzhny, G ;
Bard, AJ .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2002, 124 (21) :6090-6098
[10]   Nanocomposite polymer electrolytes for lithium batteries [J].
Croce, F ;
Appetecchi, GB ;
Persi, L ;
Scrosati, B .
NATURE, 1998, 394 (6692) :456-458