Preparation of highly uniform Ag/TiO2 and Au/TiO2 supported nanoparticle catalysts by photodeposition

被引:246
作者
Chan, SC [1 ]
Barteau, MA [1 ]
机构
[1] Univ Delaware, Dept Chem Engn, Ctr Catalyt Sci & Technol, Newark, DE 19716 USA
关键词
D O I
10.1021/la046887k
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Photodeposition of Ag nanoparticles on commercial TiO2 particles and nanoparticles was performed in order to provide direct visualization of the spatial distribution of photoactive sites on sub-micrometer-scale and nanoscale TiO2 particle surfaces and to create materials for potential catalytic applications. HRTEM (high-resolution transmission electron microscopy) and HAADF-STEM (high-angle annular dark-field scanning transmission electron microscopy) were used to characterize these materials. The size and spatial distributions of the Ag nanoparticles on the commercial TiO2 were not uniform; the concentration of Ag was higher on grain boundaries and at the edges of these submicrometer particles. In the case of TiO2 nanoparticles, the size distribution of the Ag nanoparticles deposited was relatively uniform and independent of irradiation time and photon energy. The amount of Ag deposited on TiO2 nanoparticles was at least 6 times higher than that on the commercial samples for comparable irradiation conditions. Compared to the case of Ag photodeposition, the difference in the amount of An photodeposited on TiO2 particles and nanoparticles was even greater, especially at low precursor concentrations. Photodeposition on TiO2 nanoparticles is suggested as a potential method for the preparation of Au/TiO2 catalysts, as loadings in excess of 10 wt % of uniform 1 nm metal particles were achieved in this work.
引用
收藏
页码:5588 / 5595
页数:8
相关论文
共 27 条
[1]   Analytical TEM study on the dispersion of Au nanoparticles in Au/TiO2 catalyst prepared under various temperatures [J].
Akita, T ;
Lu, P ;
Ichikawa, S ;
Tanaka, K ;
Haruta, M .
SURFACE AND INTERFACE ANALYSIS, 2001, 31 (02) :73-78
[2]  
[Anonymous], 2000, STUD SURF SCI CATAL, V130, P3167, DOI DOI 10.1016/S0167-2991(00)80509-1
[3]   The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation [J].
Anpo, M ;
Takeuchi, M .
JOURNAL OF CATALYSIS, 2003, 216 (1-2) :505-516
[4]   PHOTOCATALYTIC HYDROGENATION OF ALKYNES AND ALKENES WITH WATER OVER TIO2 - PT-LOADING EFFECT ON THE PRIMARY PROCESSES [J].
ANPO, M ;
AIKAWA, N ;
KUBOKAWA, Y .
JOURNAL OF PHYSICAL CHEMISTRY, 1984, 88 (18) :3998-4000
[5]  
Anpo M., 1997, CATAL SURV JPN, V1, P169
[6]   PHOTOELECTROCHEMISTRY AND HETEROGENEOUS PHOTOCATALYSIS AT SEMICONDUCTORS [J].
BARD, AJ .
JOURNAL OF PHOTOCHEMISTRY, 1979, 10 (01) :59-75
[7]   Au/TiO2 nanosized samples:: A catalytic, TEM, and FTIR study of the effect of calcination temperature on the CO oxidation [J].
Boccuzzi, F ;
Chiorino, A ;
Manzoli, M ;
Lu, P ;
Akita, T ;
Ichikawa, S ;
Haruta, M .
JOURNAL OF CATALYSIS, 2001, 202 (02) :256-267
[8]   The kinetics of CO oxidation by adsorbed oxygen on well-defined gold particles on TiO2(110) [J].
Bondzie, VA ;
Parker, SC ;
Campbell, CT .
CATALYSIS LETTERS, 1999, 63 (3-4) :143-151
[9]   Photocatalytic synthesis of silver nanoparticles stabilized by TiO2 nanorods:: A semiconductor/metal nanocomposite in homogeneous nonpolar solution [J].
Cozzoli, PD ;
Comparelli, R ;
Fanizza, E ;
Curri, ML ;
Agostiano, A ;
Laub, D .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (12) :3868-3879
[10]   Semiconductor-metal nanocomposites.: Photoinduced fusion and photocatalysis of gold-capped TiO2 (TiO2/Gold) nanoparticles [J].
Dawson, A ;
Kamat, PV .
JOURNAL OF PHYSICAL CHEMISTRY B, 2001, 105 (05) :960-966