Opposing roles for DNA structure-specific proteins Rad1, Msh2, Msh3, and Sgs1 in yeast gene targeting

被引:24
作者
Langston, LD
Symington, LS
机构
[1] Columbia Univ, Med Ctr, Dept Microbiol, New York, NY 10032 USA
[2] Columbia Univ, Med Ctr, Dept Microbiol, New York, NY 10032 USA
[3] Columbia Univ, Med Ctr, Integrated Program Cellular Mol & Biophys Studies, New York, NY USA
关键词
gene targeting; homologous recombination; MSH2; RAD1; SGS1;
D O I
10.1038/sj.emboj.7600698
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Targeted gene replacement (TGR) in yeast and mammalian cells is initiated by the two free ends of the linear targeting molecule, which invade their respective homologous sequences in the chromosome, leading to replacement of the targeted locus with a selectable gene from the targeting DNA. To study the postinvasion steps in recombination, we examined the effects of DNA structure-specific proteins on TGR frequency and heteroduplex DNA formation. In strains deleted of RAD1, MSH2, or MSH3, we find that the frequency of TGR is reduced and the mechanism of TGR is altered while the reverse is true for deletion of SGS1, suggesting that Rad1 and Msh2:Msh3 facilitate TGR while Sgs1 opposes it. The altered mechanism of TGR in the absence of Msh2:Msh3 and Rad1 reveals a separate role for these proteins in suppressing an alternate gene replacement pathway in which incorporation of both homology regions from a single strand of targeting DNA into heteroduplex with the targeted locus creates a mismatch between the selectable gene on the targeting DNA and the targeted gene in the chromosome.
引用
收藏
页码:2214 / 2223
页数:10
相关论文
共 50 条
[1]   SPECIFIC CLEAVAGE OF MODEL RECOMBINATION AND REPAIR INTERMEDIATES BY THE YEAST RAD1-RAD10 DNA ENDONUCLEASE [J].
BARDWELL, AJ ;
BARDWELL, L ;
TOMKINSON, AE ;
FRIEDBERG, EC .
SCIENCE, 1994, 265 (5181) :2082-2085
[2]   RAD51 is required for the repair of plasmid double-stranded DNA gaps from either plasmid or chromosomal templates [J].
Bärtsch, S ;
Kang, LE ;
Symington, LS .
MOLECULAR AND CELLULAR BIOLOGY, 2000, 20 (04) :1194-1205
[3]   A SIMPLE AND EFFICIENT METHOD FOR DIRECT GENE DELETION IN SACCHAROMYCES-CEREVISIAE [J].
BAUDIN, A ;
OZIERKALOGEROPOULOS, O ;
DENOUEL, A ;
LACROUTE, F ;
CULLIN, C .
NUCLEIC ACIDS RESEARCH, 1993, 21 (14) :3329-3330
[4]  
Clikeman JA, 2001, GENETICS, V157, P1481
[5]   Branch migration and Holliday junction resolution catalyzed by activities from mammalian cells [J].
Constantinou, A ;
Davies, AA ;
West, SC .
CELL, 2001, 104 (02) :259-268
[6]   Holliday junction resolution in human cells: two junction endonucleases with distinct substrate specificities [J].
Constantinou, A ;
Chen, XB ;
McGowan, CH ;
West, SC .
EMBO JOURNAL, 2002, 21 (20) :5577-5585
[7]   ROLE OF THE RAD1 AND RAD10 PROTEINS IN NUCLEOTIDE EXCISION-REPAIR AND RECOMBINATION [J].
DAVIES, AA ;
FRIEDBERG, EC ;
TOMKINSON, AE ;
WOOD, RD ;
WEST, SC .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (42) :24638-24641
[8]   RAD51-dependent break-induced replication in yeast [J].
Davis, AP ;
Symington, LS .
MOLECULAR AND CELLULAR BIOLOGY, 2004, 24 (06) :2344-2351
[9]   DNA structural elements required for ERCC1-XPF endonuclease activity [J].
de Laat, WL ;
Appeldoorn, E ;
Jaspers, NGJ ;
Hoeijmakers, JHJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (14) :7835-7842
[10]   THE BLOOMS-SYNDROME GENE-PRODUCT IS HOMOLOGOUS TO RECQ HELICASES [J].
ELLIS, NA ;
GRODEN, J ;
YE, TZ ;
STRAUGHEN, J ;
LENNON, DJ ;
CIOCCI, S ;
PROYTCHEVA, M ;
GERMAN, J .
CELL, 1995, 83 (04) :655-666