Tidal love numbers of neutron stars

被引:833
作者
Hinderer, Tanja [1 ]
机构
[1] Cornell Univ, Ctr Radiophys & Space Res, Ithaca, NY 14853 USA
基金
美国国家科学基金会;
关键词
equation of state; gravitation; relativity; stars : neutron;
D O I
10.1086/533487
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
For a variety of fully relativistic polytropic neutron star models we calculate the star's tidal Love number k(2). Most realistic equations of state for neutron stars can be approximated as a polytrope with an effective index n approximate to 0.5-1.0. The equilibrium stellar model is obtained by numerical integration of the Tolman-Oppenheimer-Volkhov equations. We calculate the linear l = 2 static perturbations to the Schwarzschild spacetime following the method of Thorne and Campolattaro. Combining the perturbed Einstein equations into a single second-order differential equation for the perturbation to the metric coefficient g(tt) and matching the exterior solution to the asymptotic expansion of the metric in the star's local asymptotic rest frame gives the Love number. Our results agree well with the Newtonian results in the weak field limit. The fully relativistic values differ from the Newtonian values by up to similar to 24%. The Love number is potentially measurable in gravitational wave signals from inspiralling binary neutron stars.
引用
收藏
页码:1216 / 1220
页数:5
相关论文
共 32 条
[1]   Search for gravitational waves from binary inspirals in S3 and S4 LIGO data [J].
Abbott, B. ;
Abbott, R. ;
Adhikari, R. ;
Agresti, J. ;
Ajith, P. ;
Allen, B. ;
Amin, R. ;
Anderson, S. B. ;
Anderson, W. G. ;
Arain, M. ;
Araya, M. ;
Armandula, H. ;
Ashley, M. ;
Aston, S. ;
Aufmuth, P. ;
Aulbert, C. ;
Babak, S. ;
Ballmer, S. ;
Bantilan, H. ;
Barish, B. C. ;
Barker, C. ;
Barker, D. ;
Barr, B. ;
Barriga, P. ;
Barton, M. A. ;
Bayer, K. ;
Belczynski, K. ;
Betzwieser, J. ;
Beyersdorf, P. T. ;
Bhawal, B. ;
Bilenko, I. A. ;
Billingsley, G. ;
Biswas, R. ;
Black, E. ;
Blackburn, K. ;
Blackburn, L. ;
Blair, D. ;
Bland, B. ;
Bogenstahl, J. ;
Bogue, L. ;
Bork, R. ;
Boschi, V. ;
Bose, S. ;
Brady, P. R. ;
Braginsky, V. B. ;
Brau, J. E. ;
Brinkmann, M. ;
Brooks, A. ;
Brown, D. A. ;
Bullington, A. .
PHYSICAL REVIEW D, 2008, 77 (06)
[2]  
Abramowitz M., 1964, HDB MATH FUNCTIONS F, V55
[3]   Numerical relativity and compact binaries [J].
Baumgarte, TW ;
Shapiro, SL .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2003, 376 (02) :41-131
[4]   Are post-Newtonian templates faithful and effectual in detecting gravitational signals from neutron star binaries? [J].
Berti, E ;
Pons, JA ;
Miniutti, G ;
Gualtieri, L ;
Ferrari, V .
PHYSICAL REVIEW D, 2002, 66 (06)
[5]   TIDAL INTERACTIONS OF INSPIRALING COMPACT BINARIES [J].
BILDSTEN, L ;
CUTLER, C .
ASTROPHYSICAL JOURNAL, 1992, 400 (01) :175-180
[6]   APSIDAL-MOTION CONSTANTS FOR POLYTROPIC MODELS [J].
BROOKER, RA ;
OLLE, TW .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1955, 115 (01) :101-106
[7]   THE LAST 3 MINUTES - ISSUES IN GRAVITATIONAL-WAVE MEASUREMENTS OF COALESCING COMPACT BINARIES [J].
CUTLER, C ;
APOSTOLATOS, TA ;
BILDSTEN, L ;
FINN, LS ;
FLANAGAN, EE ;
KENNEFICK, D ;
MARKOVIC, DM ;
ORI, A ;
POISSON, E ;
SUSSMAN, GJ ;
THORNE, KS .
PHYSICAL REVIEW LETTERS, 1993, 70 (20) :2984-2987
[8]   Measuring neutron-star radii with gravitational-wave detectors -: art. no. 231102 [J].
Faber, JA ;
Grandclément, P ;
Rasio, FA ;
Taniguchi, K .
PHYSICAL REVIEW LETTERS, 2002, 89 (23)
[9]   Constraining neutron-star tidal Love numbers with gravitational-wave detectors [J].
Flanagan, Eanna E. ;
Hinderer, Tanja .
PHYSICAL REVIEW D, 2008, 77 (02)
[10]   MULTIPOLE MOMENTS .2. CURVED SPACE [J].
GEROCH, R .
JOURNAL OF MATHEMATICAL PHYSICS, 1970, 11 (08) :2580-&